3d0d0947d6
some of the changes are backported from the hott3 library pi_pathover and pi_pathover' are interchanged (same for variants and for sigma) various definitions received explicit arguments: pinverse and eq_equiv_homotopy and ***.sigma_char eq_of_fn_eq_fn is renamed to inj in definitions about higher loop spaces and homotopy groups, the natural number arguments are now consistently before the type arguments
365 lines
13 KiB
Text
365 lines
13 KiB
Text
/-
|
||
Copyright (c) 2014-15 Floris van Doorn. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Author: Floris van Doorn
|
||
|
||
Partially ported from Coq HoTT
|
||
Theorems about pi-types (dependent function spaces)
|
||
-/
|
||
|
||
import types.sigma arity cubical.square
|
||
|
||
open eq equiv is_equiv funext sigma unit bool is_trunc prod function sigma.ops
|
||
|
||
namespace pi
|
||
variables {A A' : Type} {B : A → Type} {B' : A' → Type} {C : Πa, B a → Type}
|
||
{D : Πa b, C a b → Type}
|
||
{a a' a'' : A} {b b₁ b₂ : B a} {b' : B a'} {b'' : B a''} {f g : Πa, B a}
|
||
|
||
/- Paths are charactirized in [init/funext] -/
|
||
|
||
/- homotopy.symm is an equivalence -/
|
||
definition homotopy.symm_symm {A : Type} {P : A → Type} {f g : Πx, P x} (H : f ~ g) :
|
||
H⁻¹ʰᵗʸ⁻¹ʰᵗʸ = H :=
|
||
begin apply eq_of_homotopy, intro x, apply inv_inv end
|
||
|
||
definition is_equiv_homotopy_symm : is_equiv (homotopy.symm : f ~ g → g ~ f) :=
|
||
adjointify homotopy.symm homotopy.symm homotopy.symm_symm homotopy.symm_symm
|
||
|
||
/-
|
||
The identification of the path space of a dependent function space,
|
||
up to equivalence, is of course just funext.
|
||
-/
|
||
|
||
definition eq_equiv_homotopy (f g : Πx, B x) : (f = g) ≃ (f ~ g) :=
|
||
equiv.mk apd10 _
|
||
|
||
definition pi_eq_equiv (f g : Πx, B x) : (f = g) ≃ (f ~ g) := !eq_equiv_homotopy
|
||
|
||
definition is_equiv_eq_of_homotopy (f g : Πx, B x)
|
||
: is_equiv (eq_of_homotopy : f ~ g → f = g) :=
|
||
_
|
||
|
||
definition homotopy_equiv_eq (f g : Πx, B x) : (f ~ g) ≃ (f = g) :=
|
||
equiv.mk eq_of_homotopy _
|
||
|
||
|
||
/- Transport -/
|
||
|
||
definition pi_transport (p : a = a') (f : Π(b : B a), C a b)
|
||
: (transport (λa, Π(b : B a), C a b) p f) ~ (λb, !tr_inv_tr ▸ (p ▸D (f (p⁻¹ ▸ b)))) :=
|
||
by induction p; reflexivity
|
||
|
||
/- A special case of [transport_pi] where the type [B] does not depend on [A],
|
||
and so it is just a fixed type [B]. -/
|
||
definition pi_transport_constant {C : A → A' → Type} (p : a = a') (f : Π(b : A'), C a b) (b : A')
|
||
: (transport _ p f) b = p ▸ (f b) :=
|
||
by induction p; reflexivity
|
||
|
||
/- Pathovers -/
|
||
|
||
definition pi_pathover' {f : Πb, C a b} {g : Πb', C a' b'} {p : a = a'}
|
||
(r : Π(b : B a) (b' : B a') (q : b =[p] b'), f b =[apd011 C p q] g b') : f =[p] g :=
|
||
begin
|
||
cases p, apply pathover_idp_of_eq,
|
||
apply eq_of_homotopy, intro b,
|
||
apply eq_of_pathover_idp, apply r
|
||
end
|
||
|
||
definition pi_pathover_left' {f : Πb, C a b} {g : Πb', C a' b'} {p : a = a'}
|
||
(r : Π(b : B a), f b =[apd011 C p !pathover_tr] g (p ▸ b)) : f =[p] g :=
|
||
begin
|
||
cases p, apply pathover_idp_of_eq,
|
||
apply eq_of_homotopy, intro b,
|
||
apply eq_of_pathover_idp, apply r
|
||
end
|
||
|
||
definition pi_pathover_right' {f : Πb, C a b} {g : Πb', C a' b'} {p : a = a'}
|
||
(r : Π(b' : B a'), f (p⁻¹ ▸ b') =[apd011 C p !tr_pathover] g b') : f =[p] g :=
|
||
begin
|
||
cases p, apply pathover_idp_of_eq,
|
||
apply eq_of_homotopy, intro b,
|
||
apply eq_of_pathover_idp, apply r
|
||
end
|
||
|
||
definition pi_pathover_constant {C : A → A' → Type} {f : Π(b : A'), C a b}
|
||
{g : Π(b : A'), C a' b} {p : a = a'}
|
||
(r : Π(b : A'), f b =[p] g b) : f =[p] g :=
|
||
begin
|
||
cases p, apply pathover_idp_of_eq,
|
||
apply eq_of_homotopy, intro b,
|
||
exact eq_of_pathover_idp (r b),
|
||
end
|
||
|
||
-- a version where C is uncurried, but where the conclusion of r is still a proper pathover
|
||
-- instead of a heterogenous equality
|
||
definition pi_pathover {C : (Σa, B a) → Type} {f : Πb, C ⟨a, b⟩} {g : Πb', C ⟨a', b'⟩}
|
||
{p : a = a'} (r : Π(b : B a) (b' : B a') (q : b =[p] b'), f b =[dpair_eq_dpair p q] g b')
|
||
: f =[p] g :=
|
||
begin
|
||
cases p, apply pathover_idp_of_eq,
|
||
apply eq_of_homotopy, intro b,
|
||
apply (@eq_of_pathover_idp _ C), exact (r b b (pathover.idpatho b)),
|
||
end
|
||
|
||
definition pi_pathover_left {C : (Σa, B a) → Type} {f : Πb, C ⟨a, b⟩} {g : Πb', C ⟨a', b'⟩}
|
||
{p : a = a'} (r : Π(b : B a), f b =[dpair_eq_dpair p !pathover_tr] g (p ▸ b))
|
||
: f =[p] g :=
|
||
begin
|
||
cases p, apply pathover_idp_of_eq,
|
||
apply eq_of_homotopy, intro b,
|
||
apply eq_of_pathover_idp, esimp at r, exact !pathover_ap (r b)
|
||
end
|
||
|
||
definition pi_pathover_right {C : (Σa, B a) → Type} {f : Πb, C ⟨a, b⟩} {g : Πb', C ⟨a', b'⟩}
|
||
{p : a = a'} (r : Π(b' : B a'), f (p⁻¹ ▸ b') =[dpair_eq_dpair p !tr_pathover] g b')
|
||
: f =[p] g :=
|
||
begin
|
||
cases p, apply pathover_idp_of_eq,
|
||
apply eq_of_homotopy, intro b,
|
||
apply eq_of_pathover_idp, esimp at r, exact !pathover_ap (r b)
|
||
end
|
||
|
||
|
||
/- Maps on paths -/
|
||
|
||
/- The action of maps given by lambda. -/
|
||
definition ap_lambdaD {C : A' → Type} (p : a = a') (f : Πa b, C b) :
|
||
ap (λa b, f a b) p = eq_of_homotopy (λb, ap (λa, f a b) p) :=
|
||
begin
|
||
apply (eq.rec_on p),
|
||
apply inverse,
|
||
apply eq_of_homotopy_idp
|
||
end
|
||
|
||
/- Dependent paths -/
|
||
|
||
/- with more implicit arguments the conclusion of the following theorem is
|
||
(Π(b : B a), transportD B C p b (f b) = g (transport B p b)) ≃
|
||
(transport (λa, Π(b : B a), C a b) p f = g) -/
|
||
definition heq_piD (p : a = a') (f : Π(b : B a), C a b)
|
||
(g : Π(b' : B a'), C a' b') : (Π(b : B a), p ▸D (f b) = g (p ▸ b)) ≃ (p ▸ f = g) :=
|
||
eq.rec_on p (λg, !homotopy_equiv_eq) g
|
||
|
||
definition heq_pi {C : A → Type} (p : a = a') (f : Π(b : B a), C a)
|
||
(g : Π(b' : B a'), C a') : (Π(b : B a), p ▸ (f b) = g (p ▸ b)) ≃ (p ▸ f = g) :=
|
||
eq.rec_on p (λg, !homotopy_equiv_eq) g
|
||
|
||
|
||
section
|
||
open sigma sigma.ops
|
||
/- more implicit arguments:
|
||
(Π(b : B a), transport C (sigma_eq p idp) (f b) = g (p ▸ b)) ≃
|
||
(Π(b : B a), transportD B (λ(a : A) (b : B a), C ⟨a, b⟩) p b (f b) = g (transport B p b)) -/
|
||
definition heq_pi_sigma {C : (Σa, B a) → Type} (p : a = a')
|
||
(f : Π(b : B a), C ⟨a, b⟩) (g : Π(b' : B a'), C ⟨a', b'⟩) :
|
||
(Π(b : B a), (sigma_eq p !pathover_tr) ▸ (f b) = g (p ▸ b)) ≃
|
||
(Π(b : B a), p ▸D (f b) = g (p ▸ b)) :=
|
||
eq.rec_on p (λg, !equiv.rfl) g
|
||
end
|
||
|
||
/- Functorial action -/
|
||
variables (f0 : A' → A) (f1 : Π(a':A'), B (f0 a') → B' a')
|
||
|
||
/- The functoriality of [forall] is slightly subtle: it is contravariant in the domain type and covariant in the codomain, but the codomain is dependent on the domain. -/
|
||
|
||
definition pi_functor [unfold_full] : (Π(a:A), B a) → (Π(a':A'), B' a') :=
|
||
λg a', f1 a' (g (f0 a'))
|
||
|
||
definition pi_functor_left [unfold_full] (B : A → Type) : (Π(a:A), B a) → (Π(a':A'), B (f0 a')) :=
|
||
pi_functor f0 (λa, id)
|
||
|
||
definition pi_functor_right [unfold_full] {B' : A → Type} (f1 : Π(a:A), B a → B' a)
|
||
: (Π(a:A), B a) → (Π(a:A), B' a) :=
|
||
pi_functor id f1
|
||
|
||
definition ap_pi_functor {g g' : Π(a:A), B a} (h : g ~ g')
|
||
: ap (pi_functor f0 f1) (eq_of_homotopy h)
|
||
= eq_of_homotopy (λa':A', (ap (f1 a') (h (f0 a')))) :=
|
||
begin
|
||
apply (is_equiv_rect (@apd10 A B g g')), intro p, clear h,
|
||
cases p,
|
||
apply concat,
|
||
exact (ap (ap (pi_functor f0 f1)) (eq_of_homotopy_idp g)),
|
||
apply symm, apply eq_of_homotopy_idp
|
||
end
|
||
|
||
/- Equivalences -/
|
||
|
||
definition is_equiv_pi_functor [instance] [constructor] [H0 : is_equiv f0]
|
||
[H1 : Πa', is_equiv (f1 a')] : is_equiv (pi_functor f0 f1) :=
|
||
begin
|
||
apply (adjointify (pi_functor f0 f1) (pi_functor f0⁻¹
|
||
(λ(a : A) (b' : B' (f0⁻¹ a)), transport B (right_inv f0 a) ((f1 (f0⁻¹ a))⁻¹ b')))),
|
||
begin
|
||
intro h, apply eq_of_homotopy, intro a', esimp,
|
||
rewrite [adj f0 a',-tr_compose,fn_tr_eq_tr_fn _ f1,right_inv (f1 _)],
|
||
apply apdt
|
||
end,
|
||
begin
|
||
intro h, apply eq_of_homotopy, intro a, esimp,
|
||
rewrite [left_inv (f1 _)],
|
||
apply apdt
|
||
end
|
||
end
|
||
|
||
definition pi_equiv_pi_of_is_equiv [constructor] [H : is_equiv f0]
|
||
[H1 : Πa', is_equiv (f1 a')] : (Πa, B a) ≃ (Πa', B' a') :=
|
||
equiv.mk (pi_functor f0 f1) _
|
||
|
||
definition pi_equiv_pi [constructor] (f0 : A' ≃ A) (f1 : Πa', (B (to_fun f0 a') ≃ B' a'))
|
||
: (Πa, B a) ≃ (Πa', B' a') :=
|
||
pi_equiv_pi_of_is_equiv (to_fun f0) (λa', to_fun (f1 a'))
|
||
|
||
definition pi_equiv_pi_right [constructor] {P Q : A → Type} (g : Πa, P a ≃ Q a)
|
||
: (Πa, P a) ≃ (Πa, Q a) :=
|
||
pi_equiv_pi equiv.rfl g
|
||
|
||
/- Equivalence if one of the types is contractible -/
|
||
|
||
definition pi_equiv_of_is_contr_left [constructor] (B : A → Type) [H : is_contr A]
|
||
: (Πa, B a) ≃ B (center A) :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{ intro f, exact f (center A)},
|
||
{ intro b a, exact center_eq a ▸ b},
|
||
{ intro b, rewrite [prop_eq_of_is_contr (center_eq (center A)) idp]},
|
||
{ intro f, apply eq_of_homotopy, intro a, induction (center_eq a),
|
||
rewrite [prop_eq_of_is_contr (center_eq (center A)) idp]}
|
||
end
|
||
|
||
definition pi_equiv_of_is_contr_right [constructor] [H : Πa, is_contr (B a)]
|
||
: (Πa, B a) ≃ unit :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{ intro f, exact star},
|
||
{ intro u a, exact !center},
|
||
{ intro u, induction u, reflexivity},
|
||
{ intro f, apply eq_of_homotopy, intro a, apply is_prop.elim}
|
||
end
|
||
|
||
/- Interaction with other type constructors -/
|
||
|
||
-- most of these are in the file of the other type constructor
|
||
|
||
definition pi_empty_left [constructor] (B : empty → Type) : (Πx, B x) ≃ unit :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{ intro f, exact star},
|
||
{ intro x y, contradiction},
|
||
{ intro x, induction x, reflexivity},
|
||
{ intro f, apply eq_of_homotopy, intro y, contradiction},
|
||
end
|
||
|
||
definition pi_unit_left [constructor] (B : unit → Type) : (Πx, B x) ≃ B star :=
|
||
!pi_equiv_of_is_contr_left
|
||
|
||
definition pi_bool_left [constructor] (B : bool → Type) : (Πx, B x) ≃ B ff × B tt :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{ intro f, exact (f ff, f tt)},
|
||
{ intro x b, induction x, induction b: assumption},
|
||
{ intro x, induction x, reflexivity},
|
||
{ intro f, apply eq_of_homotopy, intro b, induction b: reflexivity},
|
||
end
|
||
|
||
/- Truncatedness: any dependent product of n-types is an n-type -/
|
||
|
||
theorem is_trunc_pi (B : A → Type) (n : trunc_index)
|
||
[H : ∀a, is_trunc n (B a)] : is_trunc n (Πa, B a) :=
|
||
begin
|
||
revert B H,
|
||
induction n with n IH,
|
||
{ intros B H, apply is_contr.mk (λa, !center),
|
||
intro f, apply eq_of_homotopy,
|
||
intro x, apply (center_eq (f x)) },
|
||
{ intros B H, fapply is_trunc_succ_intro, intro f g,
|
||
fapply is_trunc_equiv_closed,
|
||
apply equiv.symm, apply eq_equiv_homotopy,
|
||
apply IH,
|
||
intro a,
|
||
show is_trunc n (f a = g a), from
|
||
is_trunc_eq n (f a) (g a) }
|
||
end
|
||
local attribute is_trunc_pi [instance]
|
||
theorem is_trunc_pi_eq (n : trunc_index) (f g : Πa, B a)
|
||
[H : ∀a, is_trunc n (f a = g a)] : is_trunc n (f = g) :=
|
||
is_trunc_equiv_closed_rev n !eq_equiv_homotopy _
|
||
|
||
theorem is_trunc_not [instance] (n : trunc_index) (A : Type) : is_trunc (n.+1) ¬A :=
|
||
by unfold not;exact _
|
||
|
||
theorem is_prop_pi_eq [instance] [priority 490] (a : A) : is_prop (Π(a' : A), a = a') :=
|
||
is_prop_of_imp_is_contr
|
||
( assume (f : Πa', a = a'),
|
||
have is_contr A, from is_contr.mk a f,
|
||
by exact _) /- force type clas resolution -/
|
||
|
||
theorem is_prop_neg (A : Type) : is_prop (¬A) := _
|
||
local attribute ne [reducible]
|
||
theorem is_prop_ne [instance] {A : Type} (a b : A) : is_prop (a ≠ b) := _
|
||
|
||
definition is_contr_pi_of_neg {A : Type} (B : A → Type) (H : ¬ A) : is_contr (Πa, B a) :=
|
||
begin
|
||
apply is_contr.mk (λa, empty.elim (H a)), intro f, apply eq_of_homotopy, intro x, contradiction
|
||
end
|
||
|
||
/- Symmetry of Π -/
|
||
definition is_equiv_flip [instance] {P : A → A' → Type}
|
||
: is_equiv (@function.flip A A' P) :=
|
||
begin
|
||
fapply is_equiv.mk,
|
||
exact (@function.flip _ _ (function.flip P)),
|
||
repeat (intro f; apply idp)
|
||
end
|
||
|
||
definition pi_comm_equiv {P : A → A' → Type} : (Πa b, P a b) ≃ (Πb a, P a b) :=
|
||
equiv.mk (@function.flip _ _ P) _
|
||
|
||
/- Dependent functions are equivalent to nondependent functions into the total space together
|
||
with a homotopy -/
|
||
definition pi_equiv_arrow_sigma_right [constructor] {A : Type} {B : A → Type} (f : Πa, B a) :
|
||
Σ(f : A → Σa, B a), pr1 ∘ f ~ id :=
|
||
⟨λa, ⟨a, f a⟩, λa, idp⟩
|
||
|
||
definition pi_equiv_arrow_sigma_left.{u v} [unfold 3] {A : Type.{u}} {B : A → Type.{v}}
|
||
(v : Σ(f : A → Σa, B a), pr1 ∘ f ~ id) (a : A) : B a :=
|
||
transport B (v.2 a) (v.1 a).2
|
||
|
||
open funext
|
||
definition pi_equiv_arrow_sigma [constructor] {A : Type} (B : A → Type) :
|
||
(Πa, B a) ≃ Σ(f : A → Σa, B a), pr1 ∘ f ~ id :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{ exact pi_equiv_arrow_sigma_right},
|
||
{ exact pi_equiv_arrow_sigma_left},
|
||
{ intro v, induction v with f p, fapply sigma_eq: esimp,
|
||
{ apply eq_of_homotopy, intro a, fapply sigma_eq: esimp,
|
||
{ exact (p a)⁻¹},
|
||
{ apply inverseo, apply pathover_tr}},
|
||
{ apply pi_pathover_constant, intro a, apply eq_pathover_constant_right,
|
||
refine ap_compose (λf, f a) _ _ ⬝ph _,
|
||
refine ap02 _ !compose_eq_of_homotopy ⬝ph _,
|
||
refine !ap_eq_apd10 ⬝ph _,
|
||
refine apd10 (right_inv apd10 _) a ⬝ph _,
|
||
esimp, refine !sigma_eq_pr1 ⬝ph _, apply square_of_eq, exact !con.left_inv⁻¹}},
|
||
{ intro a, reflexivity}
|
||
end
|
||
|
||
|
||
|
||
|
||
end pi
|
||
|
||
attribute pi.is_trunc_pi [instance] [priority 1520]
|
||
|
||
namespace pi
|
||
|
||
/- pointed pi types -/
|
||
open pointed
|
||
|
||
definition pointed_pi [instance] [constructor] {A : Type} (P : A → Type) [H : Πx, pointed (P x)]
|
||
: pointed (Πx, P x) :=
|
||
pointed.mk (λx, pt)
|
||
|
||
end pi
|