2b722b3e34
this commit renames some definitions and swaps some arguments around for consistency
1303 lines
52 KiB
Text
1303 lines
52 KiB
Text
/-
|
||
Copyright (c) 2014-2016 Jakob von Raumer. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Jakob von Raumer, Floris van Doorn
|
||
|
||
Early library ported from Coq HoTT, but greatly extended since.
|
||
The basic definitions are in init.pointed
|
||
|
||
See also .pointed2
|
||
-/
|
||
|
||
import .nat.basic ..arity ..prop_trunc
|
||
open is_trunc eq prod sigma nat equiv option is_equiv bool unit sigma.ops sum algebra function
|
||
|
||
namespace pointed
|
||
variables {A B : Type}
|
||
|
||
definition pointed_loop [instance] [constructor] (a : A) : pointed (a = a) :=
|
||
pointed.mk idp
|
||
|
||
definition pointed_fun_closed [constructor] (f : A → B) [H : pointed A] : pointed B :=
|
||
pointed.mk (f pt)
|
||
|
||
definition loop [reducible] [constructor] (A : Type*) : Type* :=
|
||
pointed.mk' (point A = point A)
|
||
|
||
definition loopn [reducible] : ℕ → Type* → Type*
|
||
| loopn 0 X := X
|
||
| loopn (n+1) X := loop (loopn n X)
|
||
|
||
notation `Ω` := loop
|
||
notation `Ω[`:95 n:0 `]`:0 := loopn n
|
||
|
||
namespace ops
|
||
-- this is in a separate namespace because it caused type class inference to loop in some places
|
||
definition is_trunc_pointed_MK [instance] [priority 1100] (n : ℕ₋₂) {A : Type} (a : A)
|
||
[H : is_trunc n A] : is_trunc n (pointed.MK A a) :=
|
||
H
|
||
end ops
|
||
|
||
definition is_trunc_loop [instance] [priority 1100] (A : Type*)
|
||
(n : ℕ₋₂) [H : is_trunc (n.+1) A] : is_trunc n (Ω A) :=
|
||
!is_trunc_eq
|
||
|
||
definition loopn_zero_eq [unfold_full] (A : Type*)
|
||
: Ω[0] A = A := rfl
|
||
|
||
definition loopn_succ_eq [unfold_full] (k : ℕ) (A : Type*)
|
||
: Ω[succ k] A = Ω (Ω[k] A) := rfl
|
||
|
||
definition rfln [constructor] [reducible] {n : ℕ} {A : Type*} : Ω[n] A := pt
|
||
definition refln [constructor] [reducible] (n : ℕ) (A : Type*) : Ω[n] A := pt
|
||
definition refln_eq_refl [unfold_full] (A : Type*) (n : ℕ) : rfln = rfl :> Ω[succ n] A := rfl
|
||
|
||
definition loopn_space [unfold 3] (A : Type) [H : pointed A] (n : ℕ) : Type :=
|
||
Ω[n] (pointed.mk' A)
|
||
|
||
definition loop_mul {k : ℕ} {A : Type*} (mul : A → A → A) : Ω[k] A → Ω[k] A → Ω[k] A :=
|
||
begin cases k with k, exact mul, exact concat end
|
||
|
||
definition pType_eq {A B : Type*} (f : A ≃ B) (p : f pt = pt) : A = B :=
|
||
begin
|
||
cases A with A a, cases B with B b, esimp at *,
|
||
fapply apdt011 @pType.mk,
|
||
{ apply ua f},
|
||
{ rewrite [cast_ua, p]},
|
||
end
|
||
|
||
definition pType_eq_elim {A B : Type*} (p : A = B :> Type*)
|
||
: Σ(p : carrier A = carrier B :> Type), Point A =[p] Point B :=
|
||
by induction p; exact ⟨idp, idpo⟩
|
||
|
||
definition pType.sigma_char.{u} [constructor] : pType.{u} ≃ Σ(X : Type.{u}), X :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{ intro X, exact ⟨X, pt⟩ },
|
||
{ intro X, exact pointed.MK X.1 X.2 },
|
||
{ intro x, induction x with X x, reflexivity },
|
||
{ intro x, induction x with X x, reflexivity },
|
||
end
|
||
|
||
definition pType.eta_expand [constructor] (A : Type*) : Type* :=
|
||
pointed.MK A pt
|
||
|
||
definition add_point [constructor] (A : Type) : Type* :=
|
||
pointed.Mk (none : option A)
|
||
postfix `₊`:(max+1) := add_point
|
||
-- the inclusion A → A₊ is called "some", the extra point "pt" or "none" ("@none A")
|
||
end pointed
|
||
|
||
namespace pointed
|
||
/- truncated pointed types -/
|
||
definition ptrunctype_eq {n : ℕ₋₂} {A B : n-Type*}
|
||
(p : A = B :> Type) (q : Point A =[p] Point B) : A = B :=
|
||
begin
|
||
induction A with A HA a, induction B with B HB b, esimp at *,
|
||
induction q, esimp,
|
||
refine ap010 (ptrunctype.mk A) _ a,
|
||
exact !is_prop.elim
|
||
end
|
||
|
||
definition ptrunctype_eq_of_pType_eq {n : ℕ₋₂} {A B : n-Type*} (p : A = B :> Type*)
|
||
: A = B :=
|
||
begin
|
||
cases pType_eq_elim p with q r,
|
||
exact ptrunctype_eq q r
|
||
end
|
||
|
||
definition is_trunc_ptrunctype [instance] {n : ℕ₋₂} (A : n-Type*) : is_trunc n A :=
|
||
trunctype.struct A
|
||
|
||
end pointed open pointed
|
||
|
||
namespace pointed
|
||
variables {A B C D : Type*} {f g h : A →* B} {P : A → Type} {p₀ : P pt} {k k' l m : ppi P p₀}
|
||
|
||
/- categorical properties of pointed maps -/
|
||
|
||
definition pid [constructor] [refl] (A : Type*) : A →* A :=
|
||
pmap.mk id idp
|
||
|
||
definition pcompose [constructor] [trans] {A B C : Type*} (g : B →* C) (f : A →* B) : A →* C :=
|
||
pmap.mk (λa, g (f a)) (ap g (respect_pt f) ⬝ respect_pt g)
|
||
|
||
infixr ` ∘* `:60 := pcompose
|
||
|
||
definition pmap_of_map [constructor] {A B : Type} (f : A → B) (a : A) :
|
||
pointed.MK A a →* pointed.MK B (f a) :=
|
||
pmap.mk f idp
|
||
|
||
definition respect_pt_pcompose {A B C : Type*} (g : B →* C) (f : A →* B)
|
||
: respect_pt (g ∘* f) = ap g (respect_pt f) ⬝ respect_pt g :=
|
||
idp
|
||
|
||
definition passoc [constructor] (h : C →* D) (g : B →* C) (f : A →* B) : (h ∘* g) ∘* f ~* h ∘* (g ∘* f) :=
|
||
phomotopy.mk (λa, idp)
|
||
abstract !idp_con ⬝ whisker_right _ (!ap_con ⬝ whisker_right _ !ap_compose') ⬝ !con.assoc end
|
||
|
||
definition pid_pcompose [constructor] (f : A →* B) : pid B ∘* f ~* f :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ intro a, reflexivity},
|
||
{ reflexivity}
|
||
end
|
||
|
||
definition pcompose_pid [constructor] (f : A →* B) : f ∘* pid A ~* f :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ intro a, reflexivity},
|
||
{ reflexivity}
|
||
end
|
||
|
||
/- equivalences and equalities -/
|
||
|
||
protected definition ppi.sigma_char [constructor] {A : Type*} (B : A → Type) (b₀ : B pt) :
|
||
ppi B b₀ ≃ Σ(k : Πa, B a), k pt = b₀ :=
|
||
begin
|
||
fapply equiv.MK: intro x,
|
||
{ constructor, exact respect_pt x },
|
||
{ induction x, constructor, assumption },
|
||
{ induction x, reflexivity },
|
||
{ induction x, reflexivity }
|
||
end
|
||
|
||
definition pmap.sigma_char [constructor] (A B : Type*) : (A →* B) ≃ Σ(f : A → B), f pt = pt :=
|
||
!ppi.sigma_char
|
||
|
||
definition pmap.eta_expand [constructor] {A B : Type*} (f : A →* B) : A →* B :=
|
||
pmap.mk f (respect_pt f)
|
||
|
||
definition pmap_eta [constructor] {X Y : Type*} (f : X →* Y) : f ~* pmap.mk f (respect_pt f) :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
reflexivity,
|
||
esimp, exact !idp_con
|
||
end
|
||
|
||
definition pmap_eta_eq {A B : Type*} (f : A →* B) : pmap.mk f (respect_pt f) = f :=
|
||
begin induction f, reflexivity end
|
||
|
||
definition pmap_equiv_right (A : Type*) (B : Type)
|
||
: (Σ(b : B), A →* (pointed.Mk b)) ≃ (A → B) :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{ intro u a, exact pmap.to_fun u.2 a},
|
||
{ intro f, refine ⟨f pt, _⟩, fapply pmap.mk,
|
||
intro a, esimp, exact f a,
|
||
reflexivity},
|
||
{ intro f, reflexivity},
|
||
{ intro u, cases u with b f, cases f with f p, esimp at *, induction p,
|
||
reflexivity}
|
||
end
|
||
|
||
/- some specific pointed maps -/
|
||
|
||
-- The constant pointed map between any two types
|
||
definition pconst [constructor] (A B : Type*) : A →* B :=
|
||
!ppi_const
|
||
|
||
-- the pointed type of pointed maps
|
||
definition ppmap [constructor] (A B : Type*) : Type* :=
|
||
@pppi A (λa, B)
|
||
|
||
definition pcast [constructor] {A B : Type*} (p : A = B) : A →* B :=
|
||
pmap.mk (cast (ap pType.carrier p)) (by induction p; reflexivity)
|
||
|
||
definition pinverse [constructor] (X : Type*) : Ω X →* Ω X :=
|
||
pmap.mk eq.inverse idp
|
||
|
||
/-
|
||
we generalize the definition of ap1 to arbitrary paths, so that we can prove properties about it
|
||
using path induction (see for example ap1_gen_con and ap1_gen_con_natural)
|
||
-/
|
||
definition ap1_gen [reducible] [unfold 8 9 10] {A B : Type} (f : A → B) {a a' : A}
|
||
{b b' : B} (q : f a = b) (q' : f a' = b') (p : a = a') : b = b' :=
|
||
q⁻¹ ⬝ ap f p ⬝ q'
|
||
|
||
definition ap1_gen_idp [unfold 6] {A B : Type} (f : A → B) {a : A} {b : B} (q : f a = b) :
|
||
ap1_gen f q q idp = idp :=
|
||
con.left_inv q
|
||
|
||
definition ap1_gen_idp_left [unfold 6] {A B : Type} (f : A → B) {a a' : A} (p : a = a') :
|
||
ap1_gen f idp idp p = ap f p :=
|
||
proof idp_con (ap f p) qed
|
||
|
||
definition ap1_gen_idp_left_con {A B : Type} (f : A → B) {a : A} (p : a = a) (q : ap f p = idp) :
|
||
ap1_gen_idp_left f p ⬝ q = proof ap (concat idp) q qed :=
|
||
proof idp_con_idp q qed
|
||
|
||
definition ap1 [constructor] (f : A →* B) : Ω A →* Ω B :=
|
||
pmap.mk (λp, ap1_gen f (respect_pt f) (respect_pt f) p) (ap1_gen_idp f (respect_pt f))
|
||
|
||
definition apn (n : ℕ) (f : A →* B) : Ω[n] A →* Ω[n] B :=
|
||
begin
|
||
induction n with n IH,
|
||
{ exact f},
|
||
{ esimp [loopn], exact ap1 IH}
|
||
end
|
||
|
||
notation `Ω→`:(max+5) := ap1
|
||
notation `Ω→[`:95 n:0 `]`:0 := apn n
|
||
|
||
definition ptransport [constructor] {A : Type} (B : A → Type*) {a a' : A} (p : a = a')
|
||
: B a →* B a' :=
|
||
pmap.mk (transport B p) (apdt (λa, Point (B a)) p)
|
||
|
||
definition pmap_of_eq_pt [constructor] {A : Type} {a a' : A} (p : a = a') :
|
||
pointed.MK A a →* pointed.MK A a' :=
|
||
pmap.mk id p
|
||
|
||
definition pbool_pmap [constructor] {A : Type*} (a : A) : pbool →* A :=
|
||
pmap.mk (bool.rec pt a) idp
|
||
|
||
/- properties of pointed maps -/
|
||
|
||
definition apn_zero [unfold_full] (f : A →* B) : Ω→[0] f = f := idp
|
||
definition apn_succ [unfold_full] (n : ℕ) (f : A →* B) : Ω→[n + 1] f = Ω→ (Ω→[n] f) := idp
|
||
|
||
definition ap1_gen_con {A B : Type} (f : A → B) {a₁ a₂ a₃ : A} {b₁ b₂ b₃ : B}
|
||
(q₁ : f a₁ = b₁) (q₂ : f a₂ = b₂) (q₃ : f a₃ = b₃) (p₁ : a₁ = a₂) (p₂ : a₂ = a₃) :
|
||
ap1_gen f q₁ q₃ (p₁ ⬝ p₂) = ap1_gen f q₁ q₂ p₁ ⬝ ap1_gen f q₂ q₃ p₂ :=
|
||
begin induction p₂, induction q₃, induction q₂, reflexivity end
|
||
|
||
definition ap1_gen_inv {A B : Type} (f : A → B) {a₁ a₂ : A}
|
||
{b₁ b₂ : B} (q₁ : f a₁ = b₁) (q₂ : f a₂ = b₂) (p₁ : a₁ = a₂) :
|
||
ap1_gen f q₂ q₁ p₁⁻¹ = (ap1_gen f q₁ q₂ p₁)⁻¹ :=
|
||
begin induction p₁, induction q₁, induction q₂, reflexivity end
|
||
|
||
definition ap1_con {A B : Type*} (f : A →* B) (p q : Ω A) : ap1 f (p ⬝ q) = ap1 f p ⬝ ap1 f q :=
|
||
ap1_gen_con f (respect_pt f) (respect_pt f) (respect_pt f) p q
|
||
|
||
theorem ap1_inv (f : A →* B) (p : Ω A) : ap1 f p⁻¹ = (ap1 f p)⁻¹ :=
|
||
ap1_gen_inv f (respect_pt f) (respect_pt f) p
|
||
|
||
-- the following two facts are used for the suspension axiom to define spectrum cohomology
|
||
definition ap1_gen_con_natural {A B : Type} (f : A → B) {a₁ a₂ a₃ : A} {p₁ p₁' : a₁ = a₂}
|
||
{p₂ p₂' : a₂ = a₃}
|
||
{b₁ b₂ b₃ : B} (q₁ : f a₁ = b₁) (q₂ : f a₂ = b₂) (q₃ : f a₃ = b₃)
|
||
(r₁ : p₁ = p₁') (r₂ : p₂ = p₂') :
|
||
square (ap1_gen_con f q₁ q₂ q₃ p₁ p₂)
|
||
(ap1_gen_con f q₁ q₂ q₃ p₁' p₂')
|
||
(ap (ap1_gen f q₁ q₃) (r₁ ◾ r₂))
|
||
(ap (ap1_gen f q₁ q₂) r₁ ◾ ap (ap1_gen f q₂ q₃) r₂) :=
|
||
begin induction r₁, induction r₂, exact vrfl end
|
||
|
||
definition ap1_gen_con_idp {A B : Type} (f : A → B) {a : A} {b : B} (q : f a = b) :
|
||
ap1_gen_con f q q q idp idp ⬝ con.left_inv q ◾ con.left_inv q = con.left_inv q :=
|
||
by induction q; reflexivity
|
||
|
||
definition apn_con (n : ℕ) (f : A →* B) (p q : Ω[n+1] A)
|
||
: apn (n+1) f (p ⬝ q) = apn (n+1) f p ⬝ apn (n+1) f q :=
|
||
ap1_con (apn n f) p q
|
||
|
||
definition apn_inv (n : ℕ) (f : A →* B) (p : Ω[n+1] A) : apn (n+1) f p⁻¹ = (apn (n+1) f p)⁻¹ :=
|
||
ap1_inv (apn n f) p
|
||
|
||
definition is_equiv_ap1 (f : A →* B) [is_equiv f] : is_equiv (ap1 f) :=
|
||
begin
|
||
induction B with B b, induction f with f pf, esimp at *, cases pf, esimp,
|
||
apply is_equiv.homotopy_closed (ap f),
|
||
intro p, exact !idp_con⁻¹
|
||
end
|
||
|
||
definition pinverse_con [constructor] {X : Type*} (p q : Ω X)
|
||
: pinverse X (p ⬝ q) = pinverse X q ⬝ pinverse X p :=
|
||
!con_inv
|
||
|
||
definition pinverse_inv [constructor] {X : Type*} (p : Ω X)
|
||
: pinverse X p⁻¹ = (pinverse X p)⁻¹ :=
|
||
idp
|
||
|
||
definition is_equiv_pcast [instance] {A B : Type*} (p : A = B) : is_equiv (pcast p) :=
|
||
!is_equiv_cast
|
||
|
||
definition pcompose_pconst [constructor] (f : B →* C) : f ∘* pconst A B ~* pconst A C :=
|
||
phomotopy.mk (λa, respect_pt f) (idp_con _)⁻¹
|
||
|
||
definition pconst_pcompose [constructor] (f : A →* B) : pconst B C ∘* f ~* pconst A C :=
|
||
phomotopy.mk (λa, rfl) !ap_constant⁻¹
|
||
|
||
/- categorical properties of pointed homotopies -/
|
||
|
||
variable (k)
|
||
protected definition phomotopy.refl [constructor] : k ~* k :=
|
||
phomotopy.mk homotopy.rfl !idp_con
|
||
variable {k}
|
||
protected definition phomotopy.rfl [reducible] [constructor] [refl] : k ~* k :=
|
||
phomotopy.refl k
|
||
|
||
protected definition phomotopy.symm [constructor] [symm] (p : k ~* l) : l ~* k :=
|
||
phomotopy.mk p⁻¹ʰᵗʸ (inv_con_eq_of_eq_con (to_homotopy_pt p)⁻¹)
|
||
|
||
protected definition phomotopy.trans [constructor] [trans] (p : k ~* l) (q : l ~* m) :
|
||
k ~* m :=
|
||
phomotopy.mk (λa, p a ⬝ q a) (!con.assoc ⬝ whisker_left (p pt) (to_homotopy_pt q) ⬝ to_homotopy_pt p)
|
||
|
||
infix ` ⬝* `:75 := phomotopy.trans
|
||
postfix `⁻¹*`:(max+1) := phomotopy.symm
|
||
|
||
/- equalities and equivalences relating pointed homotopies -/
|
||
|
||
definition phomotopy.rec' [recursor] (B : k ~* l → Type)
|
||
(H : Π(h : k ~ l) (p : h pt ⬝ respect_pt l = respect_pt k), B (phomotopy.mk h p))
|
||
(h : k ~* l) : B h :=
|
||
begin
|
||
induction h with h p,
|
||
refine transport (λp, B (ppi.mk h p)) _ (H h (con_eq_of_eq_con_inv p)),
|
||
apply to_left_inv !eq_con_inv_equiv_con_eq p
|
||
end
|
||
|
||
definition phomotopy.eta_expand [constructor] (p : k ~* l) : k ~* l :=
|
||
phomotopy.mk p (to_homotopy_pt p)
|
||
|
||
definition is_trunc_ppi [instance] (n : ℕ₋₂) {A : Type*} (B : A → Type) (b₀ : B pt) [Πa, is_trunc n (B a)] :
|
||
is_trunc n (ppi B b₀) :=
|
||
is_trunc_equiv_closed_rev _ !ppi.sigma_char _
|
||
|
||
definition is_trunc_pmap [instance] (n : ℕ₋₂) (A B : Type*) [is_trunc n B] :
|
||
is_trunc n (A →* B) :=
|
||
!is_trunc_ppi
|
||
|
||
definition is_trunc_ppmap [instance] (n : ℕ₋₂) {A B : Type*} [is_trunc n B] :
|
||
is_trunc n (ppmap A B) :=
|
||
!is_trunc_pmap
|
||
|
||
definition phomotopy_of_eq [constructor] (p : k = l) : k ~* l :=
|
||
phomotopy.mk (ap010 ppi.to_fun p) begin induction p, refine !idp_con end
|
||
|
||
definition phomotopy_of_eq_idp (k : ppi P p₀) : phomotopy_of_eq idp = phomotopy.refl k :=
|
||
idp
|
||
|
||
definition pconcat_eq [constructor] (p : k ~* l) (q : l = m) : k ~* m :=
|
||
p ⬝* phomotopy_of_eq q
|
||
|
||
definition eq_pconcat [constructor] (p : k = l) (q : l ~* m) : k ~* m :=
|
||
phomotopy_of_eq p ⬝* q
|
||
|
||
infix ` ⬝*p `:75 := pconcat_eq
|
||
infix ` ⬝p* `:75 := eq_pconcat
|
||
|
||
definition pr1_phomotopy_eq {p q : k ~* l} (r : p = q) (a : A) : p a = q a :=
|
||
ap010 to_homotopy r a
|
||
|
||
definition pwhisker_left [constructor] (h : B →* C) (p : f ~* g) : h ∘* f ~* h ∘* g :=
|
||
phomotopy.mk (λa, ap h (p a))
|
||
abstract !con.assoc⁻¹ ⬝ whisker_right _ (!ap_con⁻¹ ⬝ ap02 _ (to_homotopy_pt p)) end
|
||
|
||
definition pwhisker_right [constructor] (h : C →* A) (p : f ~* g) : f ∘* h ~* g ∘* h :=
|
||
phomotopy.mk (λa, p (h a))
|
||
abstract !con.assoc⁻¹ ⬝ whisker_right _ (!ap_con_eq_con_ap)⁻¹ ⬝ !con.assoc ⬝
|
||
whisker_left _ (to_homotopy_pt p) end
|
||
|
||
definition pconcat2 [constructor] {A B C : Type*} {h i : B →* C} {f g : A →* B}
|
||
(q : h ~* i) (p : f ~* g) : h ∘* f ~* i ∘* g :=
|
||
pwhisker_left _ p ⬝* pwhisker_right _ q
|
||
|
||
variables (k l)
|
||
|
||
definition phomotopy.sigma_char [constructor]
|
||
: (k ~* l) ≃ Σ(p : k ~ l), p pt ⬝ respect_pt l = respect_pt k :=
|
||
begin
|
||
fapply equiv.MK : intros h,
|
||
{ exact ⟨h , to_homotopy_pt h⟩ },
|
||
{ cases h with h p, exact phomotopy.mk h p },
|
||
{ cases h with h p, exact ap (dpair h) (to_right_inv !eq_con_inv_equiv_con_eq p) },
|
||
{ induction h using phomotopy.rec' with h p,
|
||
exact ap (phomotopy.mk h) (to_right_inv !eq_con_inv_equiv_con_eq p) }
|
||
end
|
||
|
||
definition ppi_eq_equiv_internal : (k = l) ≃ (k ~* l) :=
|
||
calc (k = l) ≃ ppi.sigma_char P p₀ k = ppi.sigma_char P p₀ l
|
||
: eq_equiv_fn_eq (ppi.sigma_char P p₀) k l
|
||
... ≃ Σ(p : k = l),
|
||
pathover (λh, h pt = p₀) (respect_pt k) p (respect_pt l)
|
||
: sigma_eq_equiv _ _
|
||
... ≃ Σ(p : k = l),
|
||
respect_pt k = ap (λh, h pt) p ⬝ respect_pt l
|
||
: sigma_equiv_sigma_right
|
||
(λp, eq_pathover_equiv_Fl p (respect_pt k) (respect_pt l))
|
||
... ≃ Σ(p : k = l),
|
||
respect_pt k = apd10 p pt ⬝ respect_pt l
|
||
: sigma_equiv_sigma_right
|
||
(λp, equiv_eq_closed_right _ (whisker_right _ (ap_eq_apd10 p _)))
|
||
... ≃ Σ(p : k ~ l), respect_pt k = p pt ⬝ respect_pt l
|
||
: sigma_equiv_sigma_left' !eq_equiv_homotopy
|
||
... ≃ Σ(p : k ~ l), p pt ⬝ respect_pt l = respect_pt k
|
||
: sigma_equiv_sigma_right (λp, eq_equiv_eq_symm _ _)
|
||
... ≃ (k ~* l) : phomotopy.sigma_char k l
|
||
|
||
definition ppi_eq_equiv_internal_idp :
|
||
ppi_eq_equiv_internal k k idp = phomotopy.refl k :=
|
||
begin
|
||
apply ap (phomotopy.mk (homotopy.refl _)), induction k with k k₀,
|
||
esimp at * ⊢, induction k₀, reflexivity
|
||
end
|
||
|
||
definition ppi_eq_equiv [constructor] : (k = l) ≃ (k ~* l) :=
|
||
begin
|
||
refine equiv_change_fun (ppi_eq_equiv_internal k l) _,
|
||
{ apply phomotopy_of_eq },
|
||
{ intro p, induction p, exact ppi_eq_equiv_internal_idp k }
|
||
end
|
||
variables {k l}
|
||
|
||
definition pmap_eq_equiv [constructor] (f g : A →* B) : (f = g) ≃ (f ~* g) :=
|
||
ppi_eq_equiv f g
|
||
|
||
definition eq_of_phomotopy (p : k ~* l) : k = l :=
|
||
to_inv (ppi_eq_equiv k l) p
|
||
|
||
definition eq_of_phomotopy_refl (k : ppi P p₀) : eq_of_phomotopy (phomotopy.refl k) = idpath k :=
|
||
begin
|
||
apply to_inv_eq_of_eq, reflexivity
|
||
end
|
||
|
||
definition phomotopy_of_homotopy (h : k ~ l) [Πa, is_set (P a)] : k ~* l :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ exact h },
|
||
{ apply is_set.elim }
|
||
end
|
||
|
||
definition ppi_eq_of_homotopy [Πa, is_set (P a)] (p : k ~ l) : k = l :=
|
||
eq_of_phomotopy (phomotopy_of_homotopy p)
|
||
|
||
definition pmap_eq_of_homotopy [is_set B] (p : f ~ g) : f = g :=
|
||
ppi_eq_of_homotopy p
|
||
|
||
definition phomotopy_of_eq_of_phomotopy (p : k ~* l) : phomotopy_of_eq (eq_of_phomotopy p) = p :=
|
||
to_right_inv (ppi_eq_equiv k l) p
|
||
|
||
definition phomotopy_rec_eq [recursor] {Q : (k ~* k') → Type} (p : k ~* k')
|
||
(H : Π(q : k = k'), Q (phomotopy_of_eq q)) : Q p :=
|
||
phomotopy_of_eq_of_phomotopy p ▸ H (eq_of_phomotopy p)
|
||
|
||
definition phomotopy_rec_idp [recursor] {Q : Π {k' : ppi P p₀}, (k ~* k') → Type}
|
||
{k' : ppi P p₀} (H : k ~* k') (q : Q (phomotopy.refl k)) : Q H :=
|
||
begin
|
||
induction H using phomotopy_rec_eq with t,
|
||
induction t, exact phomotopy_of_eq_idp k ▸ q,
|
||
end
|
||
|
||
definition phomotopy_rec_idp' (Q : Π ⦃k' : ppi P p₀⦄, (k ~* k') → (k = k') → Type)
|
||
(q : Q phomotopy.rfl idp) ⦃k' : ppi P p₀⦄ (H : k ~* k') : Q H (eq_of_phomotopy H) :=
|
||
begin
|
||
induction H using phomotopy_rec_idp,
|
||
exact transport (Q phomotopy.rfl) !eq_of_phomotopy_refl⁻¹ q
|
||
end
|
||
|
||
attribute phomotopy.rec' [recursor]
|
||
|
||
definition phomotopy_rec_eq_phomotopy_of_eq {Q : (k ~* l) → Type} (p : k = l)
|
||
(H : Π(q : k = l), Q (phomotopy_of_eq q)) : phomotopy_rec_eq (phomotopy_of_eq p) H = H p :=
|
||
begin
|
||
unfold phomotopy_rec_eq,
|
||
refine ap (λp, p ▸ _) !adj ⬝ _,
|
||
refine !tr_compose⁻¹ ⬝ _,
|
||
apply apdt
|
||
end
|
||
|
||
definition phomotopy_rec_idp_refl {Q : Π{l}, (k ~* l) → Type} (H : Q (phomotopy.refl k)) :
|
||
phomotopy_rec_idp phomotopy.rfl H = H :=
|
||
!phomotopy_rec_eq_phomotopy_of_eq
|
||
|
||
definition phomotopy_rec_idp'_refl (Q : Π ⦃k' : ppi P p₀⦄, (k ~* k') → (k = k') → Type)
|
||
(q : Q phomotopy.rfl idp) :
|
||
phomotopy_rec_idp' Q q phomotopy.rfl = transport (Q phomotopy.rfl) !eq_of_phomotopy_refl⁻¹ q :=
|
||
!phomotopy_rec_idp_refl
|
||
|
||
/- maps out of or into contractible types -/
|
||
definition phomotopy_of_is_contr_cod [constructor] (k l : ppi P p₀) [Πa, is_contr (P a)] :
|
||
k ~* l :=
|
||
phomotopy.mk (λa, !eq_of_is_contr) !eq_of_is_contr
|
||
|
||
definition phomotopy_of_is_contr_cod_pmap [constructor] (f g : A →* B) [is_contr B] : f ~* g :=
|
||
phomotopy_of_is_contr_cod f g
|
||
|
||
definition phomotopy_of_is_contr_dom [constructor] (k l : ppi P p₀) [is_contr A] : k ~* l :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ intro a, exact eq_of_pathover_idp (change_path !is_prop.elim
|
||
(apd k !is_prop.elim ⬝op respect_pt k ⬝ (respect_pt l)⁻¹ ⬝o apd l !is_prop.elim)) },
|
||
rewrite [▸*, +is_prop_elim_self, +apd_idp, cono_idpo],
|
||
refine ap (λx, eq_of_pathover_idp (change_path x _)) !is_prop_elim_self ◾ idp ⬝ _,
|
||
xrewrite [change_path_idp, idpo_concato_eq, inv_con_cancel_right],
|
||
end
|
||
|
||
/- adjunction between (-)₊ : Type → Type* and pType.carrier : Type* → Type -/
|
||
definition pmap_equiv_left (A : Type) (B : Type*) : A₊ →* B ≃ (A → B) :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{ intro f a, cases f with f p, exact f (some a) },
|
||
{ intro f, fconstructor,
|
||
intro a, cases a, exact pt, exact f a,
|
||
reflexivity },
|
||
{ intro f, reflexivity },
|
||
{ intro f, cases f with f p, esimp, fapply eq_of_phomotopy, fapply phomotopy.mk,
|
||
{ intro a, cases a; all_goals (esimp at *), exact p⁻¹ },
|
||
{ esimp, exact !con.left_inv }},
|
||
end
|
||
|
||
-- pmap_pbool_pequiv is the pointed equivalence
|
||
definition pmap_pbool_equiv [constructor] (B : Type*) : (pbool →* B) ≃ B :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{ intro f, cases f with f p, exact f tt },
|
||
{ intro b, fconstructor,
|
||
intro u, cases u, exact pt, exact b,
|
||
reflexivity },
|
||
{ intro b, reflexivity },
|
||
{ intro f, cases f with f p, esimp, fapply eq_of_phomotopy, fapply phomotopy.mk,
|
||
{ intro a, cases a; all_goals (esimp at *), exact p⁻¹ },
|
||
{ esimp, exact !con.left_inv }},
|
||
end
|
||
|
||
/-
|
||
Pointed maps respecting pointed homotopies.
|
||
In general we need function extensionality for pap,
|
||
but for particular F we can do it without function extensionality.
|
||
This might be preferred, because such pointed homotopies compute. On the other hand,
|
||
when using function extensionality, it's easier to prove that if p is reflexivity, then the
|
||
resulting pointed homotopy is reflexivity
|
||
-/
|
||
definition pap (F : (A →* B) → (C →* D)) {f g : A →* B} (p : f ~* g) : F f ~* F g :=
|
||
begin
|
||
induction p using phomotopy_rec_idp, reflexivity
|
||
end
|
||
|
||
definition pap_refl (F : (A →* B) → (C →* D)) (f : A →* B) :
|
||
pap F (phomotopy.refl f) = phomotopy.refl (F f) :=
|
||
!phomotopy_rec_idp_refl
|
||
|
||
definition ap1_phomotopy {f g : A →* B} (p : f ~* g) : Ω→ f ~* Ω→ g :=
|
||
pap Ω→ p
|
||
|
||
notation `Ω⇒`:(max+5) := ap1_phomotopy
|
||
|
||
definition ap1_phomotopy_refl {X Y : Type*} (f : X →* Y) :
|
||
ap1_phomotopy (phomotopy.refl f) = phomotopy.refl (Ω→ f) :=
|
||
!pap_refl
|
||
|
||
--a proof not using function extensionality:
|
||
definition ap1_phomotopy_explicit {f g : A →* B} (p : f ~* g) : Ω→ f ~* Ω→ g :=
|
||
begin
|
||
induction p with p q, induction f with f pf, induction g with g pg, induction B with B b,
|
||
esimp at * ⊢, induction q, induction pg,
|
||
fapply phomotopy.mk,
|
||
{ intro l, refine _ ⬝ !idp_con⁻¹ᵖ, refine !con.assoc ⬝ _, apply inv_con_eq_of_eq_con,
|
||
apply ap_con_eq_con_ap},
|
||
{ induction A with A a, unfold [ap_con_eq_con_ap], generalize p a, generalize g a, intro b q,
|
||
induction q, reflexivity}
|
||
end
|
||
|
||
definition apn_phomotopy {f g : A →* B} (n : ℕ) (p : f ~* g) : apn n f ~* apn n g :=
|
||
begin
|
||
induction n with n IH,
|
||
{ exact p},
|
||
{ exact ap1_phomotopy IH}
|
||
end
|
||
|
||
-- the following two definitiongs are mostly the same, maybe we should remove one
|
||
definition ap_eq_of_phomotopy {A B : Type*} {f g : A →* B} (p : f ~* g) (a : A) :
|
||
ap (λf : A →* B, f a) (eq_of_phomotopy p) = p a :=
|
||
ap010 to_homotopy (phomotopy_of_eq_of_phomotopy p) a
|
||
|
||
definition to_fun_eq_of_phomotopy {A B : Type*} {f g : A →* B} (p : f ~* g) (a : A) :
|
||
ap010 pmap.to_fun (eq_of_phomotopy p) a = p a :=
|
||
begin
|
||
induction p using phomotopy_rec_idp,
|
||
exact ap (λx, ap010 pmap.to_fun x a) !eq_of_phomotopy_refl
|
||
end
|
||
|
||
definition ap1_eq_of_phomotopy {A B : Type*} {f g : A →* B} (p : f ~* g) :
|
||
ap Ω→ (eq_of_phomotopy p) = eq_of_phomotopy (ap1_phomotopy p) :=
|
||
begin
|
||
induction p using phomotopy_rec_idp,
|
||
refine ap02 _ !eq_of_phomotopy_refl ⬝ !eq_of_phomotopy_refl⁻¹ ⬝ ap eq_of_phomotopy _,
|
||
exact !ap1_phomotopy_refl⁻¹
|
||
end
|
||
|
||
/- pointed homotopies between the given pointed maps -/
|
||
|
||
definition ap1_pid [constructor] {A : Type*} : ap1 (pid A) ~* pid (Ω A) :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ intro p, esimp, refine !idp_con ⬝ !ap_id},
|
||
{ reflexivity}
|
||
end
|
||
|
||
definition ap1_pinverse [constructor] {A : Type*} : ap1 (pinverse A) ~* pinverse (Ω A) :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ intro p, refine !idp_con ⬝ _, exact !inv_eq_inv2⁻¹ },
|
||
{ reflexivity}
|
||
end
|
||
|
||
definition ap1_gen_compose {A B C : Type} (g : B → C) (f : A → B) {a₁ a₂ : A} {b₁ b₂ : B}
|
||
{c₁ c₂ : C} (q₁ : f a₁ = b₁) (q₂ : f a₂ = b₂) (r₁ : g b₁ = c₁) (r₂ : g b₂ = c₂) (p : a₁ = a₂) :
|
||
ap1_gen (g ∘ f) (ap g q₁ ⬝ r₁) (ap g q₂ ⬝ r₂) p = ap1_gen g r₁ r₂ (ap1_gen f q₁ q₂ p) :=
|
||
begin induction p, induction q₁, induction q₂, induction r₁, induction r₂, reflexivity end
|
||
|
||
definition ap1_gen_compose_idp {A B C : Type} (g : B → C) (f : A → B) {a : A}
|
||
{b : B} {c : C} (q : f a = b) (r : g b = c) :
|
||
ap1_gen_compose g f q q r r idp ⬝ (ap (ap1_gen g r r) (ap1_gen_idp f q) ⬝ ap1_gen_idp g r) =
|
||
ap1_gen_idp (g ∘ f) (ap g q ⬝ r) :=
|
||
begin induction q, induction r, reflexivity end
|
||
|
||
definition ap1_pcompose [constructor] {A B C : Type*} (g : B →* C) (f : A →* B) :
|
||
ap1 (g ∘* f) ~* ap1 g ∘* ap1 f :=
|
||
phomotopy.mk (ap1_gen_compose g f (respect_pt f) (respect_pt f) (respect_pt g) (respect_pt g))
|
||
(ap1_gen_compose_idp g f (respect_pt f) (respect_pt g))
|
||
|
||
definition ap1_pconst [constructor] (A B : Type*) : Ω→(pconst A B) ~* pconst (Ω A) (Ω B) :=
|
||
phomotopy.mk (λp, ap1_gen_idp_left (const A pt) p ⬝ ap_constant p pt) rfl
|
||
|
||
definition ap1_gen_con_left {A B : Type} {a a' : A} {b₀ b₁ b₂ : B}
|
||
{f : A → b₀ = b₁} {f' : A → b₁ = b₂} {q₀ q₁ : b₀ = b₁} {q₀' q₁' : b₁ = b₂}
|
||
(r₀ : f a = q₀) (r₁ : f a' = q₁) (r₀' : f' a = q₀') (r₁' : f' a' = q₁') (p : a = a') :
|
||
ap1_gen (λa, f a ⬝ f' a) (r₀ ◾ r₀') (r₁ ◾ r₁') p =
|
||
whisker_right q₀' (ap1_gen f r₀ r₁ p) ⬝ whisker_left q₁ (ap1_gen f' r₀' r₁' p) :=
|
||
begin induction r₀, induction r₁, induction r₀', induction r₁', induction p, reflexivity end
|
||
|
||
definition ap1_gen_con_left_idp {A B : Type} {a : A} {b₀ b₁ b₂ : B}
|
||
{f : A → b₀ = b₁} {f' : A → b₁ = b₂} {q₀ : b₀ = b₁} {q₁ : b₁ = b₂}
|
||
(r₀ : f a = q₀) (r₁ : f' a = q₁) :
|
||
ap1_gen_con_left r₀ r₀ r₁ r₁ idp =
|
||
!con.left_inv ⬝ (ap (whisker_right q₁) !con.left_inv ◾ ap (whisker_left _) !con.left_inv)⁻¹ :=
|
||
begin induction r₀, induction r₁, reflexivity end
|
||
|
||
definition ptransport_change_eq [constructor] {A : Type} (B : A → Type*) {a a' : A} {p q : a = a'}
|
||
(r : p = q) : ptransport B p ~* ptransport B q :=
|
||
phomotopy.mk (λb, ap (λp, transport B p b) r) begin induction r, apply idp_con end
|
||
|
||
definition apn_pid [constructor] {A : Type*} (n : ℕ) : apn n (pid A) ~* pid (Ω[n] A) :=
|
||
begin
|
||
induction n with n IH,
|
||
{ reflexivity},
|
||
{ exact ap1_phomotopy IH ⬝* ap1_pid}
|
||
end
|
||
|
||
definition apn_pconst (A B : Type*) (n : ℕ) :
|
||
apn n (pconst A B) ~* pconst (Ω[n] A) (Ω[n] B) :=
|
||
begin
|
||
induction n with n IH,
|
||
{ reflexivity },
|
||
{ exact ap1_phomotopy IH ⬝* !ap1_pconst }
|
||
end
|
||
|
||
definition apn_pcompose (n : ℕ) (g : B →* C) (f : A →* B) :
|
||
apn n (g ∘* f) ~* apn n g ∘* apn n f :=
|
||
begin
|
||
induction n with n IH,
|
||
{ reflexivity},
|
||
{ refine ap1_phomotopy IH ⬝* _, apply ap1_pcompose}
|
||
end
|
||
|
||
definition pcast_idp [constructor] {A : Type*} : pcast (idpath A) ~* pid A :=
|
||
by reflexivity
|
||
|
||
definition pinverse_pinverse (A : Type*) : pinverse A ∘* pinverse A ~* pid (Ω A) :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ apply inv_inv},
|
||
{ reflexivity}
|
||
end
|
||
|
||
definition pcast_ap_loop [constructor] {A B : Type*} (p : A = B) :
|
||
pcast (ap Ω p) ~* ap1 (pcast p) :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ intro a, induction p, esimp, exact (!idp_con ⬝ !ap_id)⁻¹},
|
||
{ induction p, reflexivity}
|
||
end
|
||
|
||
definition ap1_pmap_of_map [constructor] {A B : Type} (f : A → B) (a : A) :
|
||
ap1 (pmap_of_map f a) ~* pmap_of_map (ap f) (idpath a) :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ intro a, esimp, apply idp_con},
|
||
{ reflexivity}
|
||
end
|
||
|
||
/- pointed equivalences -/
|
||
|
||
structure pequiv (A B : Type*) :=
|
||
mk' :: (to_pmap : A →* B)
|
||
(to_pinv1 : B →* A)
|
||
(to_pinv2 : B →* A)
|
||
(pright_inv : to_pmap ∘* to_pinv1 ~* pid B)
|
||
(pleft_inv : to_pinv2 ∘* to_pmap ~* pid A)
|
||
|
||
infix ` ≃* `:25 := pequiv
|
||
|
||
definition pmap_of_pequiv [unfold 3] [coercion] [reducible] {A B : Type*} (f : A ≃* B) :
|
||
@ppi A (λa, B) pt :=
|
||
pequiv.to_pmap f
|
||
|
||
definition to_pinv [unfold 3] (f : A ≃* B) : B →* A :=
|
||
pequiv.to_pinv1 f
|
||
|
||
definition pleft_inv' (f : A ≃* B) : to_pinv f ∘* f ~* pid A :=
|
||
let g := to_pinv f in
|
||
let h := pequiv.to_pinv2 f in
|
||
calc g ∘* f ~* pid A ∘* (g ∘* f) : by exact !pid_pcompose⁻¹*
|
||
... ~* (h ∘* f) ∘* (g ∘* f) : by exact pwhisker_right _ (pequiv.pleft_inv f)⁻¹*
|
||
... ~* h ∘* (f ∘* g) ∘* f : by exact !passoc ⬝* pwhisker_left _ !passoc⁻¹*
|
||
... ~* h ∘* pid B ∘* f : by exact !pwhisker_left (!pwhisker_right !pequiv.pright_inv)
|
||
... ~* h ∘* f : by exact pwhisker_left _ !pid_pcompose
|
||
... ~* pid A : by exact pequiv.pleft_inv f
|
||
|
||
definition equiv_of_pequiv [coercion] [constructor] (f : A ≃* B) : A ≃ B :=
|
||
have is_equiv f, from adjointify f (to_pinv f) (pequiv.pright_inv f) (pleft_inv' f),
|
||
equiv.mk f _
|
||
|
||
attribute pointed._trans_of_equiv_of_pequiv pointed._trans_of_pmap_of_pequiv [unfold 3]
|
||
|
||
definition pequiv.to_is_equiv [instance] [constructor] (f : A ≃* B) :
|
||
is_equiv (pointed._trans_of_equiv_of_pequiv f) :=
|
||
adjointify f (to_pinv f) (pequiv.pright_inv f) (pleft_inv' f)
|
||
|
||
definition pequiv.to_is_equiv' [instance] [constructor] (f : A ≃* B) :
|
||
is_equiv (pointed._trans_of_pmap_of_pequiv f) :=
|
||
pequiv.to_is_equiv f
|
||
|
||
protected definition pequiv.MK [constructor] (f : A →* B) (g : B →* A)
|
||
(gf : g ∘* f ~* !pid) (fg : f ∘* g ~* !pid) : A ≃* B :=
|
||
pequiv.mk' f g g fg gf
|
||
|
||
definition pinv [constructor] (f : A →* B) (H : is_equiv f) : B →* A :=
|
||
pmap.mk f⁻¹ᶠ (ap f⁻¹ᶠ (respect_pt f)⁻¹ ⬝ (left_inv f pt))
|
||
|
||
definition pequiv_of_pmap [constructor] (f : A →* B) (H : is_equiv f) : A ≃* B :=
|
||
pequiv.mk' f (pinv f H) (pinv f H)
|
||
abstract begin
|
||
fapply phomotopy.mk, exact right_inv f,
|
||
induction f with f f₀, induction B with B b₀, esimp at *, induction f₀, esimp,
|
||
exact adj f pt ⬝ ap02 f !idp_con⁻¹
|
||
end end
|
||
abstract begin
|
||
fapply phomotopy.mk, exact left_inv f,
|
||
induction f with f f₀, induction B with B b₀, esimp at *, induction f₀, esimp,
|
||
exact !idp_con⁻¹ ⬝ !idp_con⁻¹
|
||
end end
|
||
|
||
definition pequiv.mk [constructor] (f : A → B) (H : is_equiv f) (p : f pt = pt) : A ≃* B :=
|
||
pequiv_of_pmap (pmap.mk f p) H
|
||
|
||
definition pequiv_of_equiv [constructor] (f : A ≃ B) (H : f pt = pt) : A ≃* B :=
|
||
pequiv.mk f _ H
|
||
|
||
protected definition pequiv.MK' [constructor] (f : A →* B) (g : B → A)
|
||
(gf : Πa, g (f a) = a) (fg : Πb, f (g b) = b) : A ≃* B :=
|
||
pequiv.mk f (adjointify f g fg gf) (respect_pt f)
|
||
|
||
/- reflexivity and symmetry (transitivity is below) -/
|
||
|
||
protected definition pequiv.refl [refl] [constructor] (A : Type*) : A ≃* A :=
|
||
pequiv.mk' (pid A) (pid A) (pid A) !pid_pcompose !pcompose_pid
|
||
|
||
protected definition pequiv.rfl [constructor] : A ≃* A :=
|
||
pequiv.refl A
|
||
|
||
protected definition pequiv.symm [symm] [constructor] (f : A ≃* B) : B ≃* A :=
|
||
pequiv.MK (to_pinv f) f (pequiv.pright_inv f) (pleft_inv' f)
|
||
|
||
postfix `⁻¹ᵉ*`:(max + 1) := pequiv.symm
|
||
|
||
definition pleft_inv (f : A ≃* B) : f⁻¹ᵉ* ∘* f ~* pid A :=
|
||
pleft_inv' f
|
||
|
||
definition pright_inv (f : A ≃* B) : f ∘* f⁻¹ᵉ* ~* pid B :=
|
||
pequiv.pright_inv f
|
||
|
||
definition to_pmap_pequiv_of_pmap {A B : Type*} (f : A →* B) (H : is_equiv f)
|
||
: pequiv.to_pmap (pequiv_of_pmap f H) = f :=
|
||
by reflexivity
|
||
|
||
definition to_pmap_pequiv_MK [constructor] (f : A →* B) (g : B →* A)
|
||
(gf : g ∘* f ~* !pid) (fg : f ∘* g ~* !pid) : pequiv.MK f g gf fg ~* f :=
|
||
by reflexivity
|
||
|
||
definition to_pinv_pequiv_MK [constructor] (f : A →* B) (g : B →* A)
|
||
(gf : g ∘* f ~* !pid) (fg : f ∘* g ~* !pid) : to_pinv (pequiv.MK f g gf fg) ~* g :=
|
||
by reflexivity
|
||
|
||
/- more on pointed equivalences -/
|
||
|
||
definition pequiv_ap [constructor] {A : Type} (B : A → Type*) {a a' : A} (p : a = a')
|
||
: B a ≃* B a' :=
|
||
pequiv_of_pmap (ptransport B p) !is_equiv_tr
|
||
|
||
definition pequiv_change_fun [constructor] (f : A ≃* B) (f' : A →* B) (Heq : f ~ f') : A ≃* B :=
|
||
pequiv_of_pmap f' (is_equiv.homotopy_closed f Heq)
|
||
|
||
definition pequiv_change_inv [constructor] (f : A ≃* B) (f' : B →* A) (Heq : to_pinv f ~ f')
|
||
: A ≃* B :=
|
||
pequiv.MK' f f' (to_left_inv (equiv_change_inv f Heq)) (to_right_inv (equiv_change_inv f Heq))
|
||
|
||
definition pequiv_rect' (f : A ≃* B) (P : A → B → Type)
|
||
(g : Πb, P (f⁻¹ b) b) (a : A) : P a (f a) :=
|
||
left_inv f a ▸ g (f a)
|
||
|
||
definition pua {A B : Type*} (f : A ≃* B) : A = B :=
|
||
pType_eq (equiv_of_pequiv f) !respect_pt
|
||
|
||
definition pequiv_of_eq [constructor] {A B : Type*} (p : A = B) : A ≃* B :=
|
||
pequiv_of_pmap (pcast p) !is_equiv_tr
|
||
|
||
definition eq_of_pequiv {A B : Type*} (p : A ≃* B) : A = B :=
|
||
pType_eq (equiv_of_pequiv p) !respect_pt
|
||
|
||
definition peap {A B : Type*} (F : Type* → Type*) (p : A ≃* B) : F A ≃* F B :=
|
||
pequiv_of_pmap (pcast (ap F (eq_of_pequiv p))) begin cases eq_of_pequiv p, apply is_equiv_id end
|
||
|
||
-- definition pequiv.eta_expand [constructor] {A B : Type*} (f : A ≃* B) : A ≃* B :=
|
||
-- pequiv.mk' f (to_pinv f) (pequiv.to_pinv2 f) (pright_inv f) _
|
||
|
||
/-
|
||
the theorem pequiv_eq, which gives a condition for two pointed equivalences are equal
|
||
is in types.equiv to avoid circular imports
|
||
-/
|
||
|
||
/- computation rules of pointed homotopies, possibly combined with pointed equivalences -/
|
||
definition pcancel_left (f : B ≃* C) {g h : A →* B} (p : f ∘* g ~* f ∘* h) : g ~* h :=
|
||
begin
|
||
refine _⁻¹* ⬝* pwhisker_left f⁻¹ᵉ* p ⬝* _:
|
||
refine !passoc⁻¹* ⬝* _:
|
||
refine pwhisker_right _ (pleft_inv f) ⬝* _:
|
||
apply pid_pcompose
|
||
end
|
||
|
||
definition pcancel_right (f : A ≃* B) {g h : B →* C} (p : g ∘* f ~* h ∘* f) : g ~* h :=
|
||
begin
|
||
refine _⁻¹* ⬝* pwhisker_right f⁻¹ᵉ* p ⬝* _:
|
||
refine !passoc ⬝* _:
|
||
refine pwhisker_left _ (pright_inv f) ⬝* _:
|
||
apply pcompose_pid
|
||
end
|
||
|
||
definition phomotopy_pinv_right_of_phomotopy {f : A ≃* B} {g : B →* C} {h : A →* C}
|
||
(p : g ∘* f ~* h) : g ~* h ∘* f⁻¹ᵉ* :=
|
||
begin
|
||
refine _ ⬝* pwhisker_right _ p, symmetry,
|
||
refine !passoc ⬝* _,
|
||
refine pwhisker_left _ (pright_inv f) ⬝* _,
|
||
apply pcompose_pid
|
||
end
|
||
|
||
definition phomotopy_of_pinv_right_phomotopy {f : B ≃* A} {g : B →* C} {h : A →* C}
|
||
(p : g ∘* f⁻¹ᵉ* ~* h) : g ~* h ∘* f :=
|
||
begin
|
||
refine _ ⬝* pwhisker_right _ p, symmetry,
|
||
refine !passoc ⬝* _,
|
||
refine pwhisker_left _ (pleft_inv f) ⬝* _,
|
||
apply pcompose_pid
|
||
end
|
||
|
||
definition pinv_right_phomotopy_of_phomotopy {f : A ≃* B} {g : B →* C} {h : A →* C}
|
||
(p : h ~* g ∘* f) : h ∘* f⁻¹ᵉ* ~* g :=
|
||
(phomotopy_pinv_right_of_phomotopy p⁻¹*)⁻¹*
|
||
|
||
definition phomotopy_of_phomotopy_pinv_right {f : B ≃* A} {g : B →* C} {h : A →* C}
|
||
(p : h ~* g ∘* f⁻¹ᵉ*) : h ∘* f ~* g :=
|
||
(phomotopy_of_pinv_right_phomotopy p⁻¹*)⁻¹*
|
||
|
||
definition phomotopy_pinv_left_of_phomotopy {f : B ≃* C} {g : A →* B} {h : A →* C}
|
||
(p : f ∘* g ~* h) : g ~* f⁻¹ᵉ* ∘* h :=
|
||
begin
|
||
refine _ ⬝* pwhisker_left _ p, symmetry,
|
||
refine !passoc⁻¹* ⬝* _,
|
||
refine pwhisker_right _ (pleft_inv f) ⬝* _,
|
||
apply pid_pcompose
|
||
end
|
||
|
||
definition phomotopy_of_pinv_left_phomotopy {f : C ≃* B} {g : A →* B} {h : A →* C}
|
||
(p : f⁻¹ᵉ* ∘* g ~* h) : g ~* f ∘* h :=
|
||
begin
|
||
refine _ ⬝* pwhisker_left _ p, symmetry,
|
||
refine !passoc⁻¹* ⬝* _,
|
||
refine pwhisker_right _ (pright_inv f) ⬝* _,
|
||
apply pid_pcompose
|
||
end
|
||
|
||
definition pinv_left_phomotopy_of_phomotopy {f : B ≃* C} {g : A →* B} {h : A →* C}
|
||
(p : h ~* f ∘* g) : f⁻¹ᵉ* ∘* h ~* g :=
|
||
(phomotopy_pinv_left_of_phomotopy p⁻¹*)⁻¹*
|
||
|
||
definition phomotopy_of_phomotopy_pinv_left {f : C ≃* B} {g : A →* B} {h : A →* C}
|
||
(p : h ~* f⁻¹ᵉ* ∘* g) : f ∘* h ~* g :=
|
||
(phomotopy_of_pinv_left_phomotopy p⁻¹*)⁻¹*
|
||
|
||
definition pcompose2 {A B C : Type*} {g g' : B →* C} {f f' : A →* B} (q : g ~* g') (p : f ~* f') :
|
||
g ∘* f ~* g' ∘* f' :=
|
||
pwhisker_right f q ⬝* pwhisker_left g' p
|
||
|
||
infixr ` ◾* `:80 := pcompose2
|
||
|
||
definition phomotopy_pinv_of_phomotopy_pid {A B : Type*} {f : A →* B} {g : B ≃* A}
|
||
(p : g ∘* f ~* pid A) : f ~* g⁻¹ᵉ* :=
|
||
phomotopy_pinv_left_of_phomotopy p ⬝* !pcompose_pid
|
||
|
||
definition phomotopy_pinv_of_phomotopy_pid' {A B : Type*} {f : A →* B} {g : B ≃* A}
|
||
(p : f ∘* g ~* pid B) : f ~* g⁻¹ᵉ* :=
|
||
phomotopy_pinv_right_of_phomotopy p ⬝* !pid_pcompose
|
||
|
||
definition pinv_phomotopy_of_pid_phomotopy {A B : Type*} {f : A →* B} {g : B ≃* A}
|
||
(p : pid A ~* g ∘* f) : g⁻¹ᵉ* ~* f :=
|
||
(phomotopy_pinv_of_phomotopy_pid p⁻¹*)⁻¹*
|
||
|
||
definition pinv_phomotopy_of_pid_phomotopy' {A B : Type*} {f : A →* B} {g : B ≃* A}
|
||
(p : pid B ~* f ∘* g) : g⁻¹ᵉ* ~* f :=
|
||
(phomotopy_pinv_of_phomotopy_pid' p⁻¹*)⁻¹*
|
||
|
||
definition pinv_pcompose_cancel_left {A B C : Type*} (g : B ≃* C) (f : A →* B) :
|
||
g⁻¹ᵉ* ∘* (g ∘* f) ~* f :=
|
||
!passoc⁻¹* ⬝* pwhisker_right f !pleft_inv ⬝* !pid_pcompose
|
||
|
||
definition pcompose_pinv_cancel_left {A B C : Type*} (g : C ≃* B) (f : A →* B) :
|
||
g ∘* (g⁻¹ᵉ* ∘* f) ~* f :=
|
||
!passoc⁻¹* ⬝* pwhisker_right f !pright_inv ⬝* !pid_pcompose
|
||
|
||
definition pinv_pcompose_cancel_right {A B C : Type*} (g : B →* C) (f : B ≃* A) :
|
||
(g ∘* f⁻¹ᵉ*) ∘* f ~* g :=
|
||
!passoc ⬝* pwhisker_left g !pleft_inv ⬝* !pcompose_pid
|
||
|
||
definition pcompose_pinv_cancel_right {A B C : Type*} (g : B →* C) (f : A ≃* B) :
|
||
(g ∘* f) ∘* f⁻¹ᵉ* ~* g :=
|
||
!passoc ⬝* pwhisker_left g !pright_inv ⬝* !pcompose_pid
|
||
|
||
definition pinv_pinv {A B : Type*} (f : A ≃* B) : (f⁻¹ᵉ*)⁻¹ᵉ* ~* f :=
|
||
(phomotopy_pinv_of_phomotopy_pid (pleft_inv f))⁻¹*
|
||
|
||
definition pinv2 {A B : Type*} {f f' : A ≃* B} (p : f ~* f') : f⁻¹ᵉ* ~* f'⁻¹ᵉ* :=
|
||
phomotopy_pinv_of_phomotopy_pid (pinv_right_phomotopy_of_phomotopy (!pid_pcompose ⬝* p)⁻¹*)
|
||
|
||
postfix [parsing_only] `⁻²*`:(max+10) := pinv2
|
||
|
||
protected definition pequiv.trans [trans] [constructor] (f : A ≃* B) (g : B ≃* C) : A ≃* C :=
|
||
pequiv.MK (g ∘* f) (f⁻¹ᵉ* ∘* g⁻¹ᵉ*)
|
||
abstract !passoc ⬝* pwhisker_left _ (pinv_pcompose_cancel_left g f) ⬝* pleft_inv f end
|
||
abstract !passoc ⬝* pwhisker_left _ (pcompose_pinv_cancel_left f g⁻¹ᵉ*) ⬝* pright_inv g end
|
||
|
||
definition pequiv_compose {A B C : Type*} (g : B ≃* C) (f : A ≃* B) : A ≃* C :=
|
||
pequiv.trans f g
|
||
|
||
infix ` ⬝e* `:75 := pequiv.trans
|
||
infixr ` ∘*ᵉ `:60 := pequiv_compose
|
||
|
||
definition to_pmap_pequiv_trans {A B C : Type*} (f : A ≃* B) (g : B ≃* C)
|
||
: pequiv.to_pmap (f ⬝e* g) = g ∘* f :=
|
||
by reflexivity
|
||
|
||
definition to_fun_pequiv_trans {X Y Z : Type*} (f : X ≃* Y) (g :Y ≃* Z) : f ⬝e* g ~ g ∘ f :=
|
||
λx, idp
|
||
|
||
definition peconcat_eq {A B C : Type*} (p : A ≃* B) (q : B = C) : A ≃* C :=
|
||
p ⬝e* pequiv_of_eq q
|
||
|
||
definition eq_peconcat {A B C : Type*} (p : A = B) (q : B ≃* C) : A ≃* C :=
|
||
pequiv_of_eq p ⬝e* q
|
||
|
||
|
||
infix ` ⬝e*p `:75 := peconcat_eq
|
||
infix ` ⬝pe* `:75 := eq_peconcat
|
||
|
||
|
||
definition trans_pinv {A B C : Type*} (f : A ≃* B) (g : B ≃* C) :
|
||
(f ⬝e* g)⁻¹ᵉ* ~* f⁻¹ᵉ* ∘* g⁻¹ᵉ* :=
|
||
by reflexivity
|
||
|
||
definition pinv_trans_pinv_left {A B C : Type*} (f : B ≃* A) (g : B ≃* C) :
|
||
(f⁻¹ᵉ* ⬝e* g)⁻¹ᵉ* ~* f ∘* g⁻¹ᵉ* :=
|
||
by reflexivity
|
||
|
||
definition pinv_trans_pinv_right {A B C : Type*} (f : A ≃* B) (g : C ≃* B) :
|
||
(f ⬝e* g⁻¹ᵉ*)⁻¹ᵉ* ~* f⁻¹ᵉ* ∘* g :=
|
||
by reflexivity
|
||
|
||
definition pinv_trans_pinv_pinv {A B C : Type*} (f : B ≃* A) (g : C ≃* B) :
|
||
(f⁻¹ᵉ* ⬝e* g⁻¹ᵉ*)⁻¹ᵉ* ~* f ∘* g :=
|
||
by reflexivity
|
||
|
||
/- pointed equivalences between particular pointed types -/
|
||
|
||
definition loopn_pequiv_loopn [constructor] (n : ℕ) (f : A ≃* B) : Ω[n] A ≃* Ω[n] B :=
|
||
pequiv.MK (apn n f) (apn n f⁻¹ᵉ*)
|
||
abstract begin
|
||
induction n with n IH,
|
||
{ apply pleft_inv},
|
||
{ replace nat.succ n with n + 1,
|
||
rewrite [+apn_succ],
|
||
refine !ap1_pcompose⁻¹* ⬝* _,
|
||
refine ap1_phomotopy IH ⬝* _,
|
||
apply ap1_pid}
|
||
end end
|
||
abstract begin
|
||
induction n with n IH,
|
||
{ apply pright_inv},
|
||
{ replace nat.succ n with n + 1,
|
||
rewrite [+apn_succ],
|
||
refine !ap1_pcompose⁻¹* ⬝* _,
|
||
refine ap1_phomotopy IH ⬝* _,
|
||
apply ap1_pid}
|
||
end end
|
||
|
||
definition is_equiv_apn [constructor] (n : ℕ) (f : A →* B) (H : is_equiv f) : is_equiv (apn n f) :=
|
||
to_is_equiv (loopn_pequiv_loopn n (pequiv_of_pmap f H))
|
||
|
||
definition loop_pequiv_loop [constructor] (f : A ≃* B) : Ω A ≃* Ω B :=
|
||
loopn_pequiv_loopn 1 f
|
||
|
||
notation `Ω≃`:(max+5) := loop_pequiv_loop
|
||
notation `Ω≃[`:95 n:0 `]`:0 := loopn_pequiv_loopn n
|
||
|
||
definition loop_pequiv_eq_closed [constructor] {A : Type} {a a' : A} (p : a = a')
|
||
: pointed.MK (a = a) idp ≃* pointed.MK (a' = a') idp :=
|
||
pequiv_of_equiv (loop_equiv_eq_closed p) (con.left_inv p)
|
||
|
||
definition to_pmap_loopn_pequiv_loopn [constructor] (n : ℕ) (f : A ≃* B)
|
||
: loopn_pequiv_loopn n f ~* apn n f :=
|
||
by reflexivity
|
||
|
||
definition to_pinv_loopn_pequiv_loopn [constructor] (n : ℕ) (f : A ≃* B)
|
||
: (loopn_pequiv_loopn n f)⁻¹ᵉ* ~* apn n f⁻¹ᵉ* :=
|
||
by reflexivity
|
||
|
||
definition loopn_pequiv_loopn_con (n : ℕ) (f : A ≃* B) (p q : Ω[n+1] A)
|
||
: loopn_pequiv_loopn (n+1) f (p ⬝ q) =
|
||
loopn_pequiv_loopn (n+1) f p ⬝ loopn_pequiv_loopn (n+1) f q :=
|
||
ap1_con (loopn_pequiv_loopn n f) p q
|
||
|
||
definition loop_pequiv_loop_con {A B : Type*} (f : A ≃* B) (p q : Ω A)
|
||
: loop_pequiv_loop f (p ⬝ q) = loop_pequiv_loop f p ⬝ loop_pequiv_loop f q :=
|
||
loopn_pequiv_loopn_con 0 f p q
|
||
|
||
definition loopn_pequiv_loopn_rfl (n : ℕ) (A : Type*) :
|
||
loopn_pequiv_loopn n (pequiv.refl A) ~* pequiv.refl (Ω[n] A) :=
|
||
begin
|
||
exact !to_pmap_loopn_pequiv_loopn ⬝* apn_pid n,
|
||
end
|
||
|
||
definition loop_pequiv_loop_rfl (A : Type*) :
|
||
loop_pequiv_loop (pequiv.refl A) ~* pequiv.refl (Ω A) :=
|
||
loopn_pequiv_loopn_rfl 1 A
|
||
|
||
definition apn_pinv (n : ℕ) {A B : Type*} (f : A ≃* B) :
|
||
Ω→[n] f⁻¹ᵉ* ~* (loopn_pequiv_loopn n f)⁻¹ᵉ* :=
|
||
by reflexivity
|
||
|
||
definition pmap_functor [constructor] {A A' B B' : Type*} (f : A' →* A) (g : B →* B') :
|
||
ppmap A B →* ppmap A' B' :=
|
||
pmap.mk (λh, g ∘* h ∘* f)
|
||
abstract begin
|
||
fapply eq_of_phomotopy, fapply phomotopy.mk,
|
||
{ esimp, intro a, exact respect_pt g},
|
||
{ rewrite [▸*, ap_constant], exact !idp_con⁻¹ }
|
||
end end
|
||
|
||
definition pequiv_pinverse (A : Type*) : Ω A ≃* Ω A :=
|
||
pequiv_of_pmap (pinverse A) !is_equiv_eq_inverse
|
||
|
||
definition pequiv_of_eq_pt [constructor] {A : Type} {a a' : A} (p : a = a') :
|
||
pointed.MK A a ≃* pointed.MK A a' :=
|
||
pequiv_of_pmap (pmap_of_eq_pt p) !is_equiv_id
|
||
|
||
definition pointed_eta_pequiv [constructor] (A : Type*) : A ≃* pointed.MK A pt :=
|
||
pequiv.mk id !is_equiv_id idp
|
||
|
||
/- every pointed map is homotopic to one of the form `pmap_of_map _ _`, up to some
|
||
pointed equivalences -/
|
||
definition phomotopy_pmap_of_map {A B : Type*} (f : A →* B) :
|
||
(pointed_eta_pequiv B ⬝e* (pequiv_of_eq_pt (respect_pt f))⁻¹ᵉ*) ∘* f ∘*
|
||
(pointed_eta_pequiv A)⁻¹ᵉ* ~* pmap_of_map f pt :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ reflexivity},
|
||
{ symmetry, exact (!ap_id ⬝ !idp_con) ◾ (!idp_con ⬝ !ap_id) ⬝ !con.right_inv }
|
||
end
|
||
|
||
/- properties of iterated loop space -/
|
||
definition loopn_succ_in (n : ℕ) (A : Type*) : Ω[succ n] A ≃* Ω[n] (Ω A) :=
|
||
begin
|
||
induction n with n IH,
|
||
{ reflexivity},
|
||
{ exact loop_pequiv_loop IH}
|
||
end
|
||
|
||
definition loopn_add (n m : ℕ) (A : Type*) : Ω[n] (Ω[m] A) ≃* Ω[m+n] (A) :=
|
||
begin
|
||
induction n with n IH,
|
||
{ reflexivity},
|
||
{ exact loop_pequiv_loop IH}
|
||
end
|
||
|
||
definition loopn_succ_out (n : ℕ) (A : Type*) : Ω[succ n] A ≃* Ω(Ω[n] A) :=
|
||
by reflexivity
|
||
|
||
definition loopn_succ_in_con {n : ℕ} (p q : Ω[succ (succ n)] A) :
|
||
loopn_succ_in (succ n) A (p ⬝ q) =
|
||
loopn_succ_in (succ n) A p ⬝ loopn_succ_in (succ n) A q :=
|
||
!loop_pequiv_loop_con
|
||
|
||
definition loopn_loop_irrel (p : point A = point A) : Ω(pointed.Mk p) = Ω[2] A :=
|
||
begin
|
||
intros, fapply pType_eq,
|
||
{ esimp, transitivity _,
|
||
apply eq_equiv_fn_eq (equiv_eq_closed_right _ p⁻¹),
|
||
esimp, apply eq_equiv_eq_closed, apply con.right_inv, apply con.right_inv},
|
||
{ esimp, apply con.left_inv}
|
||
end
|
||
|
||
definition loopn_space_loop_irrel (n : ℕ) (p : point A = point A)
|
||
: Ω[succ n](pointed.Mk p) = Ω[succ (succ n)] A :> pType :=
|
||
calc
|
||
Ω[succ n](pointed.Mk p) = Ω[n](Ω (pointed.Mk p)) : eq_of_pequiv !loopn_succ_in
|
||
... = Ω[n] (Ω[2] A) : loopn_loop_irrel
|
||
... = Ω[2+n] A : eq_of_pequiv !loopn_add
|
||
... = Ω[n+2] A : by rewrite [algebra.add.comm]
|
||
|
||
section psquare
|
||
/-
|
||
Squares of pointed maps
|
||
|
||
We treat expressions of the form
|
||
psquare f g h k :≡ k ∘* f ~* g ∘* h
|
||
as squares, where f is the top, g is the bottom, h is the left face and k is the right face.
|
||
These squares are very useful for naturality squares
|
||
-/
|
||
|
||
variables {A' A₀₀ A₂₀ A₄₀ A₀₂ A₂₂ A₄₂ A₀₄ A₂₄ A₄₄ : Type*}
|
||
{f₁₀ f₁₀' : A₀₀ →* A₂₀} {f₃₀ : A₂₀ →* A₄₀}
|
||
{f₁₂ f₁₂' : A₀₂ →* A₂₂} {f₃₂ : A₂₂ →* A₄₂}
|
||
{f₁₄ : A₀₄ →* A₂₄} {f₃₄ : A₂₄ →* A₄₄}
|
||
{f₀₁ f₀₁' : A₀₀ →* A₀₂} {f₂₁ f₂₁' : A₂₀ →* A₂₂} {f₄₁ : A₄₀ →* A₄₂}
|
||
{f₀₃ : A₀₂ →* A₀₄} {f₂₃ : A₂₂ →* A₂₄} {f₄₃ : A₄₂ →* A₄₄}
|
||
|
||
definition psquare [reducible] (f₁₀ : A₀₀ →* A₂₀) (f₁₂ : A₀₂ →* A₂₂)
|
||
(f₀₁ : A₀₀ →* A₀₂) (f₂₁ : A₂₀ →* A₂₂) : Type :=
|
||
f₂₁ ∘* f₁₀ ~* f₁₂ ∘* f₀₁
|
||
|
||
definition psquare_of_phomotopy (p : f₂₁ ∘* f₁₀ ~* f₁₂ ∘* f₀₁) : psquare f₁₀ f₁₂ f₀₁ f₂₁ :=
|
||
p
|
||
|
||
definition phomotopy_of_psquare (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : f₂₁ ∘* f₁₀ ~* f₁₂ ∘* f₀₁ :=
|
||
p
|
||
|
||
definition hsquare_of_psquare (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : hsquare f₁₀ f₁₂ f₀₁ f₂₁ :=
|
||
to_homotopy p
|
||
|
||
definition phdeg_square {f f' : A →* A'} (p : f ~* f') : psquare !pid !pid f f' :=
|
||
!pcompose_pid ⬝* p⁻¹* ⬝* !pid_pcompose⁻¹*
|
||
definition pvdeg_square {f f' : A →* A'} (p : f ~* f') : psquare f f' !pid !pid :=
|
||
!pid_pcompose ⬝* p ⬝* !pcompose_pid⁻¹*
|
||
|
||
|
||
variables (f₁₀ f₁₂ f₀₁ f₂₁)
|
||
definition phconst_square : psquare !pconst !pconst f₀₁ f₂₁ :=
|
||
!pcompose_pconst ⬝* !pconst_pcompose⁻¹*
|
||
definition pvconst_square : psquare f₁₀ f₁₂ !pconst !pconst :=
|
||
!pconst_pcompose ⬝* !pcompose_pconst⁻¹*
|
||
definition phrefl : psquare !pid !pid f₀₁ f₀₁ := phdeg_square phomotopy.rfl
|
||
definition pvrefl : psquare f₁₀ f₁₀ !pid !pid := pvdeg_square phomotopy.rfl
|
||
variables {f₁₀ f₁₂ f₀₁ f₂₁}
|
||
definition phrfl : psquare !pid !pid f₀₁ f₀₁ := phrefl f₀₁
|
||
definition pvrfl : psquare f₁₀ f₁₀ !pid !pid := pvrefl f₁₀
|
||
|
||
definition ptranspose (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : psquare f₀₁ f₂₁ f₁₀ f₁₂ :=
|
||
p⁻¹*
|
||
|
||
definition phconcat (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) (q : psquare f₃₀ f₃₂ f₂₁ f₄₁) :
|
||
psquare (f₃₀ ∘* f₁₀) (f₃₂ ∘* f₁₂) f₀₁ f₄₁ :=
|
||
!passoc⁻¹* ⬝* pwhisker_right f₁₀ q ⬝* !passoc ⬝* pwhisker_left f₃₂ p ⬝* !passoc⁻¹*
|
||
|
||
definition pvconcat (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) (q : psquare f₁₂ f₁₄ f₀₃ f₂₃) :
|
||
psquare f₁₀ f₁₄ (f₀₃ ∘* f₀₁) (f₂₃ ∘* f₂₁) :=
|
||
!passoc ⬝* pwhisker_left _ p ⬝* !passoc⁻¹* ⬝* pwhisker_right _ q ⬝* !passoc
|
||
|
||
definition phinverse {f₁₀ : A₀₀ ≃* A₂₀} {f₁₂ : A₀₂ ≃* A₂₂} (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||
psquare f₁₀⁻¹ᵉ* f₁₂⁻¹ᵉ* f₂₁ f₀₁ :=
|
||
!pid_pcompose⁻¹* ⬝* pwhisker_right _ (pleft_inv f₁₂)⁻¹* ⬝* !passoc ⬝*
|
||
pwhisker_left _
|
||
(!passoc⁻¹* ⬝* pwhisker_right _ p⁻¹* ⬝* !passoc ⬝* pwhisker_left _ !pright_inv ⬝* !pcompose_pid)
|
||
|
||
definition pvinverse {f₀₁ : A₀₀ ≃* A₀₂} {f₂₁ : A₂₀ ≃* A₂₂} (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||
psquare f₁₂ f₁₀ f₀₁⁻¹ᵉ* f₂₁⁻¹ᵉ* :=
|
||
(phinverse p⁻¹*)⁻¹*
|
||
|
||
definition phomotopy_hconcat (q : f₀₁' ~* f₀₁) (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||
psquare f₁₀ f₁₂ f₀₁' f₂₁ :=
|
||
p ⬝* pwhisker_left f₁₂ q⁻¹*
|
||
|
||
definition hconcat_phomotopy (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) (q : f₂₁' ~* f₂₁) :
|
||
psquare f₁₀ f₁₂ f₀₁ f₂₁' :=
|
||
pwhisker_right f₁₀ q ⬝* p
|
||
|
||
definition phomotopy_vconcat (q : f₁₀' ~* f₁₀) (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||
psquare f₁₀' f₁₂ f₀₁ f₂₁ :=
|
||
pwhisker_left f₂₁ q ⬝* p
|
||
|
||
definition vconcat_phomotopy (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) (q : f₁₂' ~* f₁₂) :
|
||
psquare f₁₀ f₁₂' f₀₁ f₂₁ :=
|
||
p ⬝* pwhisker_right f₀₁ q⁻¹*
|
||
|
||
infix ` ⬝h* `:73 := phconcat
|
||
infix ` ⬝v* `:73 := pvconcat
|
||
infixl ` ⬝hp* `:72 := hconcat_phomotopy
|
||
infixr ` ⬝ph* `:72 := phomotopy_hconcat
|
||
infixl ` ⬝vp* `:72 := vconcat_phomotopy
|
||
infixr ` ⬝pv* `:72 := phomotopy_vconcat
|
||
postfix `⁻¹ʰ*`:(max+1) := phinverse
|
||
postfix `⁻¹ᵛ*`:(max+1) := pvinverse
|
||
|
||
definition pwhisker_tl (f : A →* A₀₀) (q : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||
psquare (f₁₀ ∘* f) f₁₂ (f₀₁ ∘* f) f₂₁ :=
|
||
!passoc⁻¹* ⬝* pwhisker_right f q ⬝* !passoc
|
||
|
||
definition ap1_psquare (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||
psquare (Ω→ f₁₀) (Ω→ f₁₂) (Ω→ f₀₁) (Ω→ f₂₁) :=
|
||
!ap1_pcompose⁻¹* ⬝* ap1_phomotopy p ⬝* !ap1_pcompose
|
||
|
||
definition apn_psquare (n : ℕ) (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||
psquare (Ω→[n] f₁₀) (Ω→[n] f₁₂) (Ω→[n] f₀₁) (Ω→[n] f₂₁) :=
|
||
!apn_pcompose⁻¹* ⬝* apn_phomotopy n p ⬝* !apn_pcompose
|
||
|
||
end psquare
|
||
|
||
definition pinverse_natural [constructor] {X Y : Type*} (f : X →* Y) :
|
||
psquare (pinverse X) (pinverse Y) (Ω→ f) (Ω→ f) :=
|
||
phomotopy.mk (ap1_gen_inv f (respect_pt f) (respect_pt f))
|
||
abstract begin
|
||
induction Y with Y y₀, induction f with f f₀, esimp at * ⊢, induction f₀, reflexivity
|
||
end end
|
||
|
||
definition pcast_natural [constructor] {A : Type} {B C : A → Type*} (f : Πa, B a →* C a)
|
||
{a₁ a₂ : A} (p : a₁ = a₂) : psquare (pcast (ap B p)) (pcast (ap C p)) (f a₁) (f a₂) :=
|
||
phomotopy.mk
|
||
begin induction p, reflexivity end
|
||
begin induction p, exact whisker_left idp !ap_id end
|
||
|
||
definition pequiv_of_eq_natural [constructor] {A : Type} {B C : A → Type*} (f : Πa, B a →* C a)
|
||
{a₁ a₂ : A} (p : a₁ = a₂) :
|
||
psquare (pequiv_of_eq (ap B p)) (pequiv_of_eq (ap C p)) (f a₁) (f a₂) :=
|
||
pcast_natural f p
|
||
|
||
definition loopn_succ_in_natural {A B : Type*} (n : ℕ) (f : A →* B) :
|
||
psquare (loopn_succ_in n A) (loopn_succ_in n B) (Ω→[n+1] f) (Ω→[n] (Ω→ f)) :=
|
||
begin
|
||
induction n with n IH,
|
||
{ exact phomotopy.rfl },
|
||
{ exact ap1_psquare IH }
|
||
end
|
||
|
||
definition loopn_succ_in_inv_natural {A B : Type*} (n : ℕ) (f : A →* B) :
|
||
psquare (loopn_succ_in n A)⁻¹ᵉ* (loopn_succ_in n B)⁻¹ᵉ* (Ω→[n] (Ω→ f)) (Ω→[n + 1] f) :=
|
||
(loopn_succ_in_natural n f)⁻¹ʰ*
|
||
|
||
definition pnatural_square {A B : Type} (X : B → Type*) {f g : A → B}
|
||
(h : Πa, X (f a) →* X (g a)) {a a' : A} (p : a = a') :
|
||
psquare (ptransport X (ap f p)) (ptransport X (ap g p)) (h a) (h a') :=
|
||
by induction p; exact !pcompose_pid ⬝* !pid_pcompose⁻¹*
|
||
|
||
|
||
end pointed
|