3d0d0947d6
some of the changes are backported from the hott3 library pi_pathover and pi_pathover' are interchanged (same for variants and for sigma) various definitions received explicit arguments: pinverse and eq_equiv_homotopy and ***.sigma_char eq_of_fn_eq_fn is renamed to inj in definitions about higher loop spaces and homotopy groups, the natural number arguments are now consistently before the type arguments
1251 lines
46 KiB
Text
1251 lines
46 KiB
Text
/-
|
||
Copyright (c) 2015 Jakob von Raumer. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Floris van Doorn
|
||
|
||
Properties of trunc_index, is_trunc, trunctype, trunc, and the pointed versions of these
|
||
-/
|
||
|
||
-- NOTE: the fact that (is_trunc n A) is a mere proposition is proved in .prop_trunc
|
||
|
||
import .pointed2 ..function algebra.order types.nat.order types.unit types.int.hott
|
||
|
||
open eq sigma sigma.ops pi function equiv trunctype
|
||
is_equiv prod pointed nat is_trunc algebra unit
|
||
|
||
/- basic computation with ℕ₋₂, its operations and its order -/
|
||
namespace trunc_index
|
||
|
||
definition minus_one_le_succ (n : ℕ₋₂) : -1 ≤ n.+1 :=
|
||
succ_le_succ (minus_two_le n)
|
||
|
||
definition zero_le_of_nat (n : ℕ) : 0 ≤ of_nat n :=
|
||
succ_le_succ !minus_one_le_succ
|
||
|
||
open decidable
|
||
protected definition has_decidable_eq [instance] : Π(n m : ℕ₋₂), decidable (n = m)
|
||
| has_decidable_eq -2 -2 := inl rfl
|
||
| has_decidable_eq (n.+1) -2 := inr (by contradiction)
|
||
| has_decidable_eq -2 (m.+1) := inr (by contradiction)
|
||
| has_decidable_eq (n.+1) (m.+1) :=
|
||
match has_decidable_eq n m with
|
||
| inl xeqy := inl (by rewrite xeqy)
|
||
| inr xney := inr (λ h : succ n = succ m, by injection h with xeqy; exact absurd xeqy xney)
|
||
end
|
||
|
||
definition not_succ_le_minus_two {n : ℕ₋₂} (H : n .+1 ≤ -2) : empty :=
|
||
by cases H
|
||
|
||
protected definition le_trans {n m k : ℕ₋₂} (H1 : n ≤ m) (H2 : m ≤ k) : n ≤ k :=
|
||
begin
|
||
induction H2 with k H2 IH,
|
||
{ exact H1},
|
||
{ exact le.step IH}
|
||
end
|
||
|
||
definition le_of_succ_le_succ {n m : ℕ₋₂} (H : n.+1 ≤ m.+1) : n ≤ m :=
|
||
begin
|
||
cases H with m H',
|
||
{ apply le.tr_refl},
|
||
{ exact trunc_index.le_trans (le.step !le.tr_refl) H'}
|
||
end
|
||
|
||
theorem not_succ_le_self {n : ℕ₋₂} : ¬n.+1 ≤ n :=
|
||
begin
|
||
induction n with n IH: intro H,
|
||
{ exact not_succ_le_minus_two H},
|
||
{ exact IH (le_of_succ_le_succ H)}
|
||
end
|
||
|
||
protected definition le_antisymm {n m : ℕ₋₂} (H1 : n ≤ m) (H2 : m ≤ n) : n = m :=
|
||
begin
|
||
induction H2 with n H2 IH,
|
||
{ reflexivity},
|
||
{ exfalso, apply @not_succ_le_self n, exact trunc_index.le_trans H1 H2}
|
||
end
|
||
|
||
protected definition le_succ {n m : ℕ₋₂} (H1 : n ≤ m) : n ≤ m.+1 :=
|
||
le.step H1
|
||
|
||
protected definition self_le_succ (n : ℕ₋₂) : n ≤ n.+1 :=
|
||
le.step (trunc_index.le.tr_refl n)
|
||
|
||
-- the order is total
|
||
open sum
|
||
protected theorem le_sum_le (n m : ℕ₋₂) : n ≤ m ⊎ m ≤ n :=
|
||
begin
|
||
induction m with m IH,
|
||
{ exact inr !minus_two_le},
|
||
{ cases IH with H H,
|
||
{ exact inl (trunc_index.le_succ H)},
|
||
{ cases H with n' H,
|
||
{ exact inl !trunc_index.self_le_succ},
|
||
{ exact inr (succ_le_succ H)}}}
|
||
end
|
||
|
||
end trunc_index open trunc_index
|
||
|
||
definition linear_weak_order_trunc_index [trans_instance] [reducible] :
|
||
linear_weak_order trunc_index :=
|
||
linear_weak_order.mk le trunc_index.le.tr_refl @trunc_index.le_trans @trunc_index.le_antisymm
|
||
trunc_index.le_sum_le
|
||
|
||
namespace trunc_index
|
||
|
||
/- more theorems about truncation indices -/
|
||
|
||
definition zero_add (n : ℕ₋₂) : (0 : ℕ₋₂) + n = n :=
|
||
begin
|
||
cases n with n, reflexivity,
|
||
cases n with n, reflexivity,
|
||
induction n with n IH, reflexivity, exact ap succ IH
|
||
end
|
||
|
||
definition add_zero (n : ℕ₋₂) : n + (0 : ℕ₋₂) = n :=
|
||
by reflexivity
|
||
|
||
definition succ_add_nat (n : ℕ₋₂) (m : ℕ) : n.+1 + m = (n + m).+1 :=
|
||
by induction m with m IH; reflexivity; exact ap succ IH
|
||
|
||
definition nat_add_succ (n : ℕ) (m : ℕ₋₂) : n + m.+1 = (n + m).+1 :=
|
||
begin
|
||
cases m with m, reflexivity,
|
||
cases m with m, reflexivity,
|
||
induction m with m IH, reflexivity, exact ap succ IH
|
||
end
|
||
|
||
definition add_nat_succ (n : ℕ₋₂) (m : ℕ) : n + (nat.succ m) = (n + m).+1 :=
|
||
by reflexivity
|
||
|
||
definition nat_succ_add (n : ℕ) (m : ℕ₋₂) : (nat.succ n) + m = (n + m).+1 :=
|
||
begin
|
||
cases m with m, reflexivity,
|
||
cases m with m, reflexivity,
|
||
induction m with m IH, reflexivity, exact ap succ IH
|
||
end
|
||
|
||
definition sub_two_add_two (n : ℕ₋₂) : sub_two (add_two n) = n :=
|
||
begin
|
||
induction n with n IH,
|
||
{ reflexivity},
|
||
{ exact ap succ IH}
|
||
end
|
||
|
||
definition add_two_sub_two (n : ℕ) : add_two (sub_two n) = n :=
|
||
begin
|
||
induction n with n IH,
|
||
{ reflexivity},
|
||
{ exact ap nat.succ IH}
|
||
end
|
||
|
||
definition of_nat_add_plus_two_of_nat (n m : ℕ) : n +2+ m = of_nat (n + m + 2) :=
|
||
begin
|
||
induction m with m IH,
|
||
{ reflexivity},
|
||
{ exact ap succ IH}
|
||
end
|
||
|
||
definition of_nat_add_of_nat (n m : ℕ) : of_nat n + of_nat m = of_nat (n + m) :=
|
||
begin
|
||
induction m with m IH,
|
||
{ reflexivity},
|
||
{ exact ap succ IH}
|
||
end
|
||
|
||
definition succ_add_plus_two (n m : ℕ₋₂) : n.+1 +2+ m = (n +2+ m).+1 :=
|
||
begin
|
||
induction m with m IH,
|
||
{ reflexivity},
|
||
{ exact ap succ IH}
|
||
end
|
||
|
||
definition add_plus_two_succ (n m : ℕ₋₂) : n +2+ m.+1 = (n +2+ m).+1 :=
|
||
idp
|
||
|
||
definition add_succ_succ (n m : ℕ₋₂) : n + m.+2 = n +2+ m :=
|
||
idp
|
||
|
||
definition succ_add_succ (n m : ℕ₋₂) : n.+1 + m.+1 = n +2+ m :=
|
||
begin
|
||
cases m with m IH,
|
||
{ reflexivity},
|
||
{ apply succ_add_plus_two}
|
||
end
|
||
|
||
definition succ_succ_add (n m : ℕ₋₂) : n.+2 + m = n +2+ m :=
|
||
begin
|
||
cases m with m IH,
|
||
{ reflexivity},
|
||
{ exact !succ_add_succ ⬝ !succ_add_plus_two}
|
||
end
|
||
|
||
definition succ_sub_two (n : ℕ) : (nat.succ n).-2 = n.-2 .+1 := rfl
|
||
definition sub_two_succ_succ (n : ℕ) : n.-2.+1.+1 = n := rfl
|
||
definition succ_sub_two_succ (n : ℕ) : (nat.succ n).-2.+1 = n := rfl
|
||
|
||
definition of_nat_add_two (n : ℕ₋₂) : of_nat (add_two n) = n.+2 :=
|
||
begin induction n with n IH, reflexivity, exact ap succ IH end
|
||
|
||
lemma minus_two_add_plus_two (n : ℕ₋₂) : -2+2+n = n :=
|
||
by induction n with n p; reflexivity; exact ap succ p
|
||
|
||
lemma add_plus_two_comm (n k : ℕ₋₂) : n +2+ k = k +2+ n :=
|
||
begin
|
||
induction n with n IH,
|
||
{ exact minus_two_add_plus_two k },
|
||
{ exact !succ_add_plus_two ⬝ ap succ IH}
|
||
end
|
||
|
||
lemma sub_one_add_plus_two_sub_one (n m : ℕ) : n.-1 +2+ m.-1 = of_nat (n + m) :=
|
||
begin
|
||
induction m with m IH,
|
||
{ reflexivity },
|
||
{ exact ap succ IH }
|
||
end
|
||
|
||
definition of_nat_le_of_nat {n m : ℕ} (H : n ≤ m) : (of_nat n ≤ of_nat m) :=
|
||
begin
|
||
induction H with m H IH,
|
||
{ apply le.refl},
|
||
{ exact trunc_index.le_succ IH}
|
||
end
|
||
|
||
definition sub_two_le_sub_two {n m : ℕ} (H : n ≤ m) : n.-2 ≤ m.-2 :=
|
||
begin
|
||
induction H with m H IH,
|
||
{ apply le.refl},
|
||
{ exact trunc_index.le_succ IH}
|
||
end
|
||
|
||
definition add_two_le_add_two {n m : ℕ₋₂} (H : n ≤ m) : add_two n ≤ add_two m :=
|
||
begin
|
||
induction H with m H IH,
|
||
{ reflexivity},
|
||
{ constructor, exact IH},
|
||
end
|
||
|
||
definition le_of_sub_two_le_sub_two {n m : ℕ} (H : n.-2 ≤ m.-2) : n ≤ m :=
|
||
begin
|
||
rewrite [-add_two_sub_two n, -add_two_sub_two m],
|
||
exact add_two_le_add_two H,
|
||
end
|
||
|
||
definition le_of_of_nat_le_of_nat {n m : ℕ} (H : of_nat n ≤ of_nat m) : n ≤ m :=
|
||
begin
|
||
apply le_of_sub_two_le_sub_two,
|
||
exact le_of_succ_le_succ (le_of_succ_le_succ H)
|
||
end
|
||
|
||
protected definition of_nat_monotone {n k : ℕ} : n ≤ k → of_nat n ≤ of_nat k :=
|
||
begin
|
||
intro H, induction H with k H K,
|
||
{ apply le.tr_refl },
|
||
{ apply le.step K }
|
||
end
|
||
|
||
protected theorem succ_le_of_not_le {n m : ℕ₋₂} (H : ¬ n ≤ m) : m.+1 ≤ n :=
|
||
begin
|
||
cases (le.total n m) with H2 H2,
|
||
{ exfalso, exact H H2},
|
||
{ cases H2 with n' H2',
|
||
{ exfalso, exact H !le.refl},
|
||
{ exact succ_le_succ H2'}}
|
||
end
|
||
|
||
definition trunc_index.decidable_le [instance] : Π(n m : ℕ₋₂), decidable (n ≤ m) :=
|
||
begin
|
||
intro n, induction n with n IH: intro m,
|
||
{ left, apply minus_two_le},
|
||
cases m with m,
|
||
{ right, apply not_succ_le_minus_two},
|
||
cases IH m with H H,
|
||
{ left, apply succ_le_succ H},
|
||
right, intro H2, apply H, exact le_of_succ_le_succ H2
|
||
end
|
||
|
||
protected definition pred [unfold 1] (n : ℕ₋₂) : ℕ₋₂ :=
|
||
begin cases n with n, exact -2, exact n end
|
||
|
||
definition trunc_index_equiv_nat [constructor] : ℕ₋₂ ≃ ℕ :=
|
||
equiv.MK add_two sub_two add_two_sub_two sub_two_add_two
|
||
|
||
definition is_set_trunc_index [instance] : is_set ℕ₋₂ :=
|
||
is_trunc_equiv_closed_rev 0 trunc_index_equiv_nat _
|
||
|
||
end trunc_index open trunc_index
|
||
|
||
namespace is_trunc
|
||
|
||
variables {A B : Type} {n : ℕ₋₂}
|
||
|
||
/- closure properties of truncatedness -/
|
||
theorem is_trunc_is_embedding_closed (f : A → B) [Hf : is_embedding f] [HB : is_trunc n B]
|
||
(Hn : -1 ≤ n) : is_trunc n A :=
|
||
begin
|
||
induction n with n,
|
||
{exfalso, exact not_succ_le_minus_two Hn},
|
||
{apply is_trunc_succ_intro, intro a a',
|
||
fapply @is_trunc_is_equiv_closed_rev _ _ n (ap f)}
|
||
end
|
||
|
||
theorem is_trunc_is_retraction_closed (f : A → B) [Hf : is_retraction f]
|
||
(n : ℕ₋₂) [HA : is_trunc n A] : is_trunc n B :=
|
||
begin
|
||
revert A B f Hf HA,
|
||
induction n with n IH,
|
||
{ intro A B f Hf HA, induction Hf with g ε, fapply is_contr.mk,
|
||
{ exact f (center A)},
|
||
{ intro b, apply concat,
|
||
{ apply (ap f), exact (center_eq (g b))},
|
||
{ apply ε}}},
|
||
{ intro A B f Hf HA, induction Hf with g ε,
|
||
apply is_trunc_succ_intro, intro b b',
|
||
fapply (IH (g b = g b')),
|
||
{ intro q, exact ((ε b)⁻¹ ⬝ ap f q ⬝ ε b')},
|
||
{ apply (is_retraction.mk (ap g)),
|
||
{ intro p, induction p, {rewrite [↑ap, con.left_inv]}}},
|
||
{ apply is_trunc_eq}}
|
||
end
|
||
|
||
definition is_embedding_to_fun (A B : Type) : is_embedding (@to_fun A B) :=
|
||
λf f', !is_equiv_ap_to_fun
|
||
|
||
/- theorems about trunctype -/
|
||
protected definition trunctype.sigma_char.{l} [constructor] (n : ℕ₋₂) :
|
||
(trunctype.{l} n) ≃ (Σ (A : Type.{l}), is_trunc n A) :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{ intro A, exact (⟨carrier A, struct A⟩)},
|
||
{ intro S, exact (trunctype.mk S.1 S.2)},
|
||
{ intro S, induction S with S1 S2, reflexivity},
|
||
{ intro A, induction A with A1 A2, reflexivity},
|
||
end
|
||
|
||
definition trunctype_eq_equiv [constructor] (n : ℕ₋₂) (A B : n-Type) :
|
||
(A = B) ≃ (carrier A = carrier B) :=
|
||
calc
|
||
(A = B) ≃ (to_fun (trunctype.sigma_char n) A = to_fun (trunctype.sigma_char n) B)
|
||
: eq_equiv_fn_eq
|
||
... ≃ ((to_fun (trunctype.sigma_char n) A).1 = (to_fun (trunctype.sigma_char n) B).1)
|
||
: equiv.symm (!equiv_subtype)
|
||
... ≃ (carrier A = carrier B) : equiv.refl
|
||
|
||
theorem is_trunc_trunctype [instance] (n : ℕ₋₂) : is_trunc n.+1 (n-Type) :=
|
||
begin
|
||
apply is_trunc_succ_intro, intro X Y,
|
||
apply is_trunc_equiv_closed_rev _ !trunctype_eq_equiv,
|
||
apply is_trunc_equiv_closed_rev _ !eq_equiv_equiv,
|
||
induction n,
|
||
{ apply @is_contr_of_inhabited_prop,
|
||
{ apply is_trunc_equiv },
|
||
{ apply equiv_of_is_contr_of_is_contr}},
|
||
{ apply is_trunc_equiv }
|
||
end
|
||
|
||
/- univalence for truncated types -/
|
||
definition teq_equiv_equiv {n : ℕ₋₂} {A B : n-Type} : (A = B) ≃ (A ≃ B) :=
|
||
trunctype_eq_equiv n A B ⬝e eq_equiv_equiv A B
|
||
|
||
definition tua {n : ℕ₋₂} {A B : n-Type} (f : A ≃ B) : A = B :=
|
||
(trunctype_eq_equiv n A B)⁻¹ᶠ (ua f)
|
||
|
||
definition tua_refl {n : ℕ₋₂} (A : n-Type) : tua (@erfl A) = idp :=
|
||
begin
|
||
refine ap (trunctype_eq_equiv n A A)⁻¹ᶠ (ua_refl A) ⬝ _,
|
||
refine ap (inj _) _ ⬝ !inj'_idp ,
|
||
apply ap (dpair_eq_dpair idp), apply is_prop.elim
|
||
end
|
||
|
||
definition tua_trans {n : ℕ₋₂} {A B C : n-Type} (f : A ≃ B) (g : B ≃ C)
|
||
: tua (f ⬝e g) = tua f ⬝ tua g :=
|
||
begin
|
||
refine ap (trunctype_eq_equiv n A C)⁻¹ᶠ (ua_trans f g) ⬝ _,
|
||
refine ap (inj _) _ ⬝ !inj'_con,
|
||
refine _ ⬝ !dpair_eq_dpair_con,
|
||
apply ap (dpair_eq_dpair _), esimp, apply is_prop.elim
|
||
end
|
||
|
||
definition tua_symm {n : ℕ₋₂} {A B : n-Type} (f : A ≃ B) : tua f⁻¹ᵉ = (tua f)⁻¹ :=
|
||
begin
|
||
apply eq_inv_of_con_eq_idp',
|
||
refine !tua_trans⁻¹ ⬝ _,
|
||
refine ap tua _ ⬝ !tua_refl,
|
||
apply equiv_eq, exact to_right_inv f
|
||
end
|
||
|
||
definition tcast [unfold 4] {n : ℕ₋₂} {A B : n-Type} (p : A = B) (a : A) : B :=
|
||
cast (ap trunctype.carrier p) a
|
||
|
||
definition ptcast [constructor] {n : ℕ₋₂} {A B : n-Type*} (p : A = B) : A →* B :=
|
||
pcast (ap ptrunctype.to_pType p)
|
||
|
||
theorem tcast_tua_fn {n : ℕ₋₂} {A B : n-Type} (f : A ≃ B) : tcast (tua f) = to_fun f :=
|
||
begin
|
||
cases A with A HA, cases B with B HB, esimp at *,
|
||
induction f using rec_on_ua_idp, esimp,
|
||
have HA = HB, from !is_prop.elim, cases this,
|
||
exact ap tcast !tua_refl
|
||
end
|
||
|
||
/- theorems about decidable equality and axiom K -/
|
||
theorem is_set_of_axiom_K {A : Type} (K : Π{a : A} (p : a = a), p = idp) : is_set A :=
|
||
is_set.mk _ (λa b p q, eq.rec K q p)
|
||
|
||
theorem is_set_of_relation.{u} {A : Type.{u}} (R : A → A → Type.{u})
|
||
(mere : Π(a b : A), is_prop (R a b)) (refl : Π(a : A), R a a)
|
||
(imp : Π{a b : A}, R a b → a = b) : is_set A :=
|
||
is_set_of_axiom_K
|
||
(λa p,
|
||
have H2 : transport (λx, R a x → a = x) p (@imp a a) = @imp a a, from !apdt,
|
||
have H3 : Π(r : R a a), transport (λx, a = x) p (imp r)
|
||
= imp (transport (λx, R a x) p r), from
|
||
to_fun (equiv.symm !heq_pi) H2,
|
||
have H4 : imp (refl a) ⬝ p = imp (refl a), from
|
||
calc
|
||
imp (refl a) ⬝ p = transport (λx, a = x) p (imp (refl a)) : eq_transport_r
|
||
... = imp (transport (λx, R a x) p (refl a)) : H3
|
||
... = imp (refl a) : is_prop.elim,
|
||
cancel_left (imp (refl a)) H4)
|
||
|
||
definition relation_equiv_eq {A : Type} (R : A → A → Type)
|
||
(mere : Π(a b : A), is_prop (R a b)) (refl : Π(a : A), R a a)
|
||
(imp : Π{a b : A}, R a b → a = b) (a b : A) : R a b ≃ a = b :=
|
||
have is_set A, from is_set_of_relation R mere refl @imp,
|
||
equiv_of_is_prop imp (λp, p ▸ refl a)
|
||
|
||
local attribute not [reducible]
|
||
theorem is_set_of_double_neg_elim {A : Type} (H : Π(a b : A), ¬¬a = b → a = b)
|
||
: is_set A :=
|
||
is_set_of_relation (λa b, ¬¬a = b) _ (λa n, n idp) H
|
||
|
||
section
|
||
open decidable
|
||
--this is proven differently in init.hedberg
|
||
theorem is_set_of_decidable_eq (A : Type) [H : decidable_eq A] : is_set A :=
|
||
is_set_of_double_neg_elim (λa b, by_contradiction)
|
||
end
|
||
|
||
theorem is_trunc_of_axiom_K_of_le {A : Type} {n : ℕ₋₂} (H : -1 ≤ n)
|
||
(K : Π(a : A), is_trunc n (a = a)) : is_trunc (n.+1) A :=
|
||
@is_trunc_succ_intro _ _ (λa b, is_trunc_of_imp_is_trunc_of_le H (λp, eq.rec_on p !K))
|
||
|
||
theorem is_trunc_succ_of_is_trunc_loop (Hn : -1 ≤ n) (Hp : Π(a : A), is_trunc n (a = a))
|
||
: is_trunc (n.+1) A :=
|
||
begin
|
||
apply is_trunc_succ_intro, intros a a',
|
||
apply is_trunc_of_imp_is_trunc_of_le Hn, intro p,
|
||
induction p, apply Hp
|
||
end
|
||
|
||
theorem is_prop_iff_is_contr {A : Type} (a : A) :
|
||
is_prop A ↔ is_contr A :=
|
||
iff.intro (λH, is_contr.mk a (is_prop.elim a)) _
|
||
|
||
theorem is_trunc_succ_iff_is_trunc_loop (A : Type) (Hn : -1 ≤ n) :
|
||
is_trunc (n.+1) A ↔ Π(a : A), is_trunc n (a = a) :=
|
||
iff.intro _ (is_trunc_succ_of_is_trunc_loop Hn)
|
||
|
||
-- use loopn in name
|
||
theorem is_trunc_iff_is_contr_loop_succ (n : ℕ) (A : Type)
|
||
: is_trunc n A ↔ Π(a : A), is_contr (Ω[succ n](pointed.Mk a)) :=
|
||
begin
|
||
revert A, induction n with n IH,
|
||
{ intro A, esimp [loopn], transitivity _,
|
||
{ apply is_trunc_succ_iff_is_trunc_loop, apply le.refl},
|
||
{ apply pi_iff_pi, intro a, esimp, apply is_prop_iff_is_contr, reflexivity}},
|
||
{ intro A, esimp [loopn],
|
||
transitivity _,
|
||
{ apply @is_trunc_succ_iff_is_trunc_loop @n, esimp, apply minus_one_le_succ},
|
||
apply pi_iff_pi, intro a, transitivity _, apply IH,
|
||
transitivity _, apply pi_iff_pi, intro p,
|
||
rewrite [loopn_space_loop_irrel n p], apply iff.refl, esimp,
|
||
apply imp_iff, reflexivity}
|
||
end
|
||
|
||
-- use loopn in name
|
||
theorem is_trunc_iff_is_contr_loop (n : ℕ) (A : Type)
|
||
: is_trunc (n.-2.+1) A ↔ (Π(a : A), is_contr (Ω[n](pointed.Mk a))) :=
|
||
begin
|
||
induction n with n,
|
||
{ esimp [sub_two,loopn], apply iff.intro,
|
||
intro H a, exact is_contr_of_inhabited_prop a,
|
||
intro H, apply is_prop_of_imp_is_contr, exact H},
|
||
{ apply is_trunc_iff_is_contr_loop_succ},
|
||
end
|
||
|
||
-- rename to is_contr_loopn_of_is_trunc
|
||
theorem is_contr_loop_of_is_trunc (n : ℕ) (A : Type*) [H : is_trunc (n.-2.+1) A] :
|
||
is_contr (Ω[n] A) :=
|
||
begin
|
||
induction A,
|
||
apply iff.mp !is_trunc_iff_is_contr_loop H
|
||
end
|
||
|
||
theorem is_trunc_loopn_of_is_trunc (n : ℕ₋₂) (k : ℕ) (A : Type*) [H : is_trunc n A] :
|
||
is_trunc n (Ω[k] A) :=
|
||
begin
|
||
induction k with k IH,
|
||
{ exact H},
|
||
{ apply is_trunc_eq}
|
||
end
|
||
|
||
definition is_trunc_loopn (k : ℕ₋₂) (n : ℕ) (A : Type*) [H : is_trunc (k+n) A]
|
||
: is_trunc k (Ω[n] A) :=
|
||
begin
|
||
revert k H, induction n with n IH: intro k H, exact _,
|
||
apply is_trunc_eq, apply IH, rewrite [succ_add_nat, add_nat_succ at H], exact H
|
||
end
|
||
|
||
lemma is_trunc_loopn_nat (n m : ℕ) (A : Type*) [H : is_trunc (n + m) A] :
|
||
is_trunc n (Ω[m] A) :=
|
||
@is_trunc_loopn n m A (transport (λk, is_trunc k _) (of_nat_add_of_nat n m)⁻¹ H)
|
||
|
||
definition is_set_loopn (n : ℕ) (A : Type*) [is_trunc n A] : is_set (Ω[n] A) :=
|
||
have is_trunc (0+n) A, by rewrite [zero_add]; exact _,
|
||
is_trunc_loopn_nat 0 n A
|
||
|
||
lemma is_trunc_loop_nat (n : ℕ) (A : Type*) [H : is_trunc (n + 1) A] :
|
||
is_trunc n (Ω A) :=
|
||
is_trunc_loop A n
|
||
|
||
definition is_trunc_of_eq {n m : ℕ₋₂} (p : n = m) {A : Type} (H : is_trunc n A) : is_trunc m A :=
|
||
transport (λk, is_trunc k A) p H
|
||
|
||
definition pequiv_punit_of_is_contr [constructor] (A : Type*) (H : is_contr A) : A ≃* punit :=
|
||
pequiv_of_equiv (equiv_unit_of_is_contr A) (@is_prop.elim unit _ _ _)
|
||
|
||
definition pequiv_punit_of_is_contr' [constructor] (A : Type) (H : is_contr A)
|
||
: pointed.MK A (center A) ≃* punit :=
|
||
pequiv_punit_of_is_contr (pointed.MK A (center A)) H
|
||
|
||
definition is_trunc_is_contr_fiber (n : ℕ₋₂) {A B : Type} (f : A → B)
|
||
(b : B) [is_trunc n A] [is_trunc n B] : is_trunc n (is_contr (fiber f b)) :=
|
||
begin
|
||
cases n,
|
||
{ apply is_contr_of_inhabited_prop, apply is_contr_fun_of_is_equiv,
|
||
apply is_equiv_of_is_contr },
|
||
{ apply is_trunc_succ_of_is_prop }
|
||
end
|
||
|
||
end is_trunc open is_trunc
|
||
|
||
namespace trunc
|
||
universe variable u
|
||
variables {n : ℕ₋₂} {A : Type.{u}} {B : Type} {a₁ a₂ a₃ a₄ : A}
|
||
|
||
definition trunc_functor2 [unfold 6 7] {n : ℕ₋₂} {A B C : Type} (f : A → B → C)
|
||
(x : trunc n A) (y : trunc n B) : trunc n C :=
|
||
by induction x with a; induction y with b; exact tr (f a b)
|
||
|
||
definition tconcat [unfold 6 7] (p : trunc n (a₁ = a₂)) (q : trunc n (a₂ = a₃)) :
|
||
trunc n (a₁ = a₃) :=
|
||
trunc_functor2 concat p q
|
||
|
||
definition tinverse [unfold 5] (p : trunc n (a₁ = a₂)) : trunc n (a₂ = a₁) :=
|
||
trunc_functor _ inverse p
|
||
|
||
definition tidp [reducible] [constructor] : trunc n (a₁ = a₁) :=
|
||
tr idp
|
||
|
||
definition tassoc (p : trunc n (a₁ = a₂)) (q : trunc n (a₂ = a₃))
|
||
(r : trunc n (a₃ = a₄)) : tconcat (tconcat p q) r = tconcat p (tconcat q r) :=
|
||
by induction p; induction q; induction r; exact ap tr !con.assoc
|
||
|
||
definition tidp_tcon (p : trunc n (a₁ = a₂)) : tconcat tidp p = p :=
|
||
by induction p; exact ap tr !idp_con
|
||
|
||
definition tcon_tidp (p : trunc n (a₁ = a₂)) : tconcat p tidp = p :=
|
||
by induction p; reflexivity
|
||
|
||
definition left_tinv (p : trunc n (a₁ = a₂)) : tconcat (tinverse p) p = tidp :=
|
||
by induction p; exact ap tr !con.left_inv
|
||
|
||
definition right_tinv (p : trunc n (a₁ = a₂)) : tconcat p (tinverse p) = tidp :=
|
||
by induction p; exact ap tr !con.right_inv
|
||
|
||
definition tap [unfold 7] (f : A → B) (p : trunc n (a₁ = a₂)) : trunc n (f a₁ = f a₂) :=
|
||
trunc_functor _ (ap f) p
|
||
|
||
definition tap_tidp (f : A → B) : tap f (@tidp n A a₁) = tidp := idp
|
||
definition tap_tcon (f : A → B) (p : trunc n (a₁ = a₂)) (q : trunc n (a₂ = a₃)) :
|
||
tap f (tconcat p q) = tconcat (tap f p) (tap f q) :=
|
||
by induction p; induction q; exact ap tr !ap_con
|
||
|
||
/- characterization of equality in truncated types -/
|
||
protected definition code [unfold 3 4] (n : ℕ₋₂) (aa aa' : trunc n.+1 A) : trunctype.{u} n :=
|
||
by induction aa with a; induction aa' with a'; exact trunctype.mk' n (trunc n (a = a'))
|
||
|
||
protected definition encode [unfold 3 5] {n : ℕ₋₂} {aa aa' : trunc n.+1 A}
|
||
: aa = aa' → trunc.code n aa aa' :=
|
||
begin
|
||
intro p, induction p, induction aa with a, esimp, exact (tr idp)
|
||
end
|
||
|
||
protected definition decode [unfold 3 4 5] {n : ℕ₋₂} (aa aa' : trunc n.+1 A) :
|
||
trunc.code n aa aa' → aa = aa' :=
|
||
begin
|
||
induction aa' with a', induction aa with a,
|
||
esimp [trunc.code, trunc.rec_on], intro x,
|
||
induction x with p, exact ap tr p,
|
||
end
|
||
|
||
definition trunc_eq_equiv [constructor] (n : ℕ₋₂) (aa aa' : trunc n.+1 A)
|
||
: aa = aa' ≃ trunc.code n aa aa' :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{ apply trunc.encode},
|
||
{ apply trunc.decode},
|
||
{ eapply (trunc.rec_on aa'), eapply (trunc.rec_on aa),
|
||
intro a a' x, esimp [trunc.code, trunc.rec_on] at x,
|
||
refine (@trunc.rec_on n _ _ x _ _),
|
||
intro x, apply is_trunc_eq,
|
||
intro p, induction p, reflexivity},
|
||
{ intro p, induction p, apply (trunc.rec_on aa), intro a, exact idp},
|
||
end
|
||
|
||
definition tr_eq_tr_equiv [constructor] (n : ℕ₋₂) (a a' : A)
|
||
: (tr a = tr a' :> trunc n.+1 A) ≃ trunc n (a = a') :=
|
||
!trunc_eq_equiv
|
||
|
||
definition trunc_eq {n : ℕ₋₂} {a a' : A} (p : trunc n (a = a')) :tr a = tr a' :> trunc n.+1 A :=
|
||
!tr_eq_tr_equiv⁻¹ᵉ p
|
||
|
||
definition code_mul {n : ℕ₋₂} {aa₁ aa₂ aa₃ : trunc n.+1 A}
|
||
(g : trunc.code n aa₁ aa₂) (h : trunc.code n aa₂ aa₃) : trunc.code n aa₁ aa₃ :=
|
||
begin
|
||
induction aa₁ with a₁, induction aa₂ with a₂, induction aa₃ with a₃,
|
||
esimp at *, apply tconcat g h,
|
||
end
|
||
|
||
/- encode preserves concatenation -/
|
||
definition encode_con' {n : ℕ₋₂} {aa₁ aa₂ aa₃ : trunc n.+1 A} (p : aa₁ = aa₂) (q : aa₂ = aa₃)
|
||
: trunc.encode (p ⬝ q) = code_mul (trunc.encode p) (trunc.encode q) :=
|
||
begin
|
||
induction p, induction q, induction aa₁ with a₁, reflexivity
|
||
end
|
||
|
||
definition encode_con {n : ℕ₋₂} {a₁ a₂ a₃ : A} (p : tr a₁ = tr a₂ :> trunc (n.+1) A)
|
||
(q : tr a₂ = tr a₃ :> trunc (n.+1) A)
|
||
: trunc.encode (p ⬝ q) = tconcat (trunc.encode p) (trunc.encode q) :=
|
||
encode_con' p q
|
||
|
||
/- the principle of unique choice -/
|
||
definition unique_choice {P : A → Type} [H : Πa, is_prop (P a)] (f : Πa, ∥ P a ∥) (a : A)
|
||
: P a :=
|
||
!trunc_equiv (f a)
|
||
|
||
/- transport over a truncated family -/
|
||
definition trunc_transport {a a' : A} {P : A → Type} (p : a = a') (n : ℕ₋₂) (x : P a)
|
||
: transport (λa, trunc n (P a)) p (tr x) = tr (p ▸ x) :=
|
||
by induction p; reflexivity
|
||
|
||
/- pathover over a truncated family -/
|
||
definition trunc_pathover {A : Type} {B : A → Type} {n : ℕ₋₂} {a a' : A} {p : a = a'}
|
||
{b : B a} {b' : B a'} (q : b =[p] b') : @tr n _ b =[p] @tr n _ b' :=
|
||
by induction q; constructor
|
||
|
||
/- truncations preserve truncatedness -/
|
||
definition is_trunc_trunc_of_is_trunc [instance] [priority 500] (A : Type)
|
||
(n m : ℕ₋₂) [H : is_trunc n A] : is_trunc n (trunc m A) :=
|
||
begin
|
||
revert A m H, eapply (trunc_index.rec_on n),
|
||
{ clear n, intro A m H, refine is_contr_equiv_closed_rev _ H,
|
||
{ apply trunc_equiv, apply (@is_trunc_of_le _ -2), apply minus_two_le} },
|
||
{ clear n, intro n IH A m H, induction m with m,
|
||
{ apply (@is_trunc_of_le _ -2), apply minus_two_le},
|
||
{ apply is_trunc_succ_intro, intro aa aa',
|
||
apply (@trunc.rec_on _ _ _ aa (λy, !is_trunc_succ_of_is_prop)),
|
||
eapply (@trunc.rec_on _ _ _ aa' (λy, !is_trunc_succ_of_is_prop)),
|
||
intro a a', apply is_trunc_equiv_closed_rev _ !tr_eq_tr_equiv (IH _ _ _) }}
|
||
end
|
||
|
||
/- equivalences between truncated types (see also hit.trunc) -/
|
||
definition trunc_trunc_equiv_left [constructor] (A : Type) {n m : ℕ₋₂} (H : n ≤ m)
|
||
: trunc n (trunc m A) ≃ trunc n A :=
|
||
begin
|
||
note H2 := is_trunc_of_le (trunc n A) H,
|
||
fapply equiv.MK,
|
||
{ intro x, induction x with x, induction x with x, exact tr x },
|
||
{ exact trunc_functor n tr },
|
||
{ intro x, induction x with x, reflexivity},
|
||
{ intro x, induction x with x, induction x with x, reflexivity}
|
||
end
|
||
|
||
definition trunc_trunc_equiv_right [constructor] (A : Type) {n m : ℕ₋₂} (H : n ≤ m)
|
||
: trunc m (trunc n A) ≃ trunc n A :=
|
||
begin
|
||
apply trunc_equiv,
|
||
exact is_trunc_of_le _ H,
|
||
end
|
||
|
||
definition trunc_equiv_trunc_of_le {n m : ℕ₋₂} {A B : Type} (H : n ≤ m)
|
||
(f : trunc m A ≃ trunc m B) : trunc n A ≃ trunc n B :=
|
||
(trunc_trunc_equiv_left A H)⁻¹ᵉ ⬝e trunc_equiv_trunc n f ⬝e trunc_trunc_equiv_left B H
|
||
|
||
definition trunc_trunc_equiv_trunc_trunc [constructor] (n m : ℕ₋₂) (A : Type)
|
||
: trunc n (trunc m A) ≃ trunc m (trunc n A) :=
|
||
begin
|
||
fapply equiv.MK: intro x; induction x with x; induction x with x,
|
||
{ exact tr (tr x)},
|
||
{ exact tr (tr x)},
|
||
{ reflexivity},
|
||
{ reflexivity}
|
||
end
|
||
|
||
theorem is_trunc_trunc_of_le (A : Type)
|
||
(n : ℕ₋₂) {m k : ℕ₋₂} (H : m ≤ k) [is_trunc n (trunc k A)] : is_trunc n (trunc m A) :=
|
||
is_trunc_equiv_closed _ (trunc_trunc_equiv_left _ H) _
|
||
|
||
definition trunc_functor_homotopy [unfold 7] {X Y : Type} (n : ℕ₋₂) {f g : X → Y}
|
||
(p : f ~ g) (x : trunc n X) : trunc_functor n f x = trunc_functor n g x :=
|
||
begin
|
||
induction x with x, esimp, exact ap tr (p x)
|
||
end
|
||
|
||
section hsquare
|
||
variables {A₀₀ A₂₀ A₄₀ A₀₂ A₂₂ A₄₂ A₀₄ A₂₄ A₄₄ : Type}
|
||
{f₁₀ : A₀₀ → A₂₀} {f₀₁ : A₀₀ → A₀₂} {f₂₁ : A₂₀ → A₂₂} {f₁₂ : A₀₂ → A₂₂}
|
||
|
||
definition trunc_functor_hsquare (n : ℕ₋₂) (h : hsquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||
hsquare (trunc_functor n f₁₀) (trunc_functor n f₁₂)
|
||
(trunc_functor n f₀₁) (trunc_functor n f₂₁) :=
|
||
λa, !trunc_functor_compose⁻¹ ⬝ trunc_functor_homotopy n h a ⬝ !trunc_functor_compose
|
||
|
||
end hsquare
|
||
|
||
definition trunc_functor_homotopy_of_le {n k : ℕ₋₂} {A B : Type} (f : A → B) (H : n ≤ k) :
|
||
to_fun (trunc_trunc_equiv_left B H) ∘
|
||
trunc_functor n (trunc_functor k f) ∘
|
||
to_fun (trunc_trunc_equiv_left A H)⁻¹ᵉ ~
|
||
trunc_functor n f :=
|
||
begin
|
||
intro x, induction x with x, reflexivity
|
||
end
|
||
|
||
definition is_equiv_trunc_functor_of_le {n k : ℕ₋₂} {A B : Type} (f : A → B) (H : n ≤ k)
|
||
(H' : is_equiv (trunc_functor k f)) : is_equiv (trunc_functor n f) :=
|
||
is_equiv_of_equiv_of_homotopy (trunc_equiv_trunc_of_le H (equiv.mk (trunc_functor k f) _))
|
||
(trunc_functor_homotopy_of_le f H)
|
||
|
||
/- trunc_functor preserves surjectivity -/
|
||
|
||
definition is_surjective_trunc_functor {A B : Type} (n : ℕ₋₂) (f : A → B) [H : is_surjective f]
|
||
: is_surjective (trunc_functor n f) :=
|
||
begin
|
||
cases n with n: intro b,
|
||
{ exact tr (fiber.mk !center !is_prop.elim)},
|
||
{ refine @trunc.rec _ _ _ _ _ b, {intro x, exact is_trunc_of_le _ !minus_one_le_succ},
|
||
clear b, intro b, induction H b with a p,
|
||
exact tr (fiber.mk (tr a) (ap tr p))}
|
||
end
|
||
|
||
/- truncation of pointed types -/
|
||
definition ptrunc [constructor] (n : ℕ₋₂) (X : Type*) : n-Type* :=
|
||
ptrunctype.mk (trunc n X) _ (tr pt)
|
||
|
||
definition is_trunc_ptrunc_of_is_trunc [instance] [priority 500] (A : Type*)
|
||
(n m : ℕ₋₂) [H : is_trunc n A] : is_trunc n (ptrunc m A) :=
|
||
is_trunc_trunc_of_is_trunc A n m
|
||
|
||
definition is_contr_ptrunc_minus_one (A : Type*) : is_contr (ptrunc -1 A) :=
|
||
is_contr_of_inhabited_prop pt
|
||
|
||
/- pointed maps involving ptrunc -/
|
||
definition ptrunc_functor [constructor] {X Y : Type*} (n : ℕ₋₂) (f : X →* Y)
|
||
: ptrunc n X →* ptrunc n Y :=
|
||
pmap.mk (trunc_functor n f) (ap tr (respect_pt f))
|
||
|
||
definition ptr [constructor] (n : ℕ₋₂) (A : Type*) : A →* ptrunc n A :=
|
||
pmap.mk tr idp
|
||
|
||
definition puntrunc [constructor] (n : ℕ₋₂) (A : Type*) [is_trunc n A] : ptrunc n A →* A :=
|
||
pmap.mk untrunc_of_is_trunc idp
|
||
|
||
definition ptrunc.elim [constructor] (n : ℕ₋₂) {X Y : Type*} [is_trunc n Y] (f : X →* Y) :
|
||
ptrunc n X →* Y :=
|
||
pmap.mk (trunc.elim f) (respect_pt f)
|
||
|
||
definition ptrunc_functor_le {k l : ℕ₋₂} (p : l ≤ k) (X : Type*)
|
||
: ptrunc k X →* ptrunc l X :=
|
||
have is_trunc k (ptrunc l X), from is_trunc_of_le _ p,
|
||
ptrunc.elim _ (ptr l X)
|
||
|
||
/- pointed equivalences involving ptrunc -/
|
||
definition ptrunc_pequiv_ptrunc [constructor] (n : ℕ₋₂) {X Y : Type*} (H : X ≃* Y)
|
||
: ptrunc n X ≃* ptrunc n Y :=
|
||
pequiv_of_equiv (trunc_equiv_trunc n H) (ap tr (respect_pt H))
|
||
|
||
definition ptrunc_pequiv [constructor] (n : ℕ₋₂) (X : Type*) [H : is_trunc n X]
|
||
: ptrunc n X ≃* X :=
|
||
pequiv_of_equiv (trunc_equiv n X) idp
|
||
|
||
definition ptrunc_ptrunc_pequiv_left [constructor] (A : Type*) {n m : ℕ₋₂} (H : n ≤ m)
|
||
: ptrunc n (ptrunc m A) ≃* ptrunc n A :=
|
||
pequiv_of_equiv (trunc_trunc_equiv_left A H) idp
|
||
|
||
definition ptrunc_ptrunc_pequiv_right [constructor] (A : Type*) {n m : ℕ₋₂} (H : n ≤ m)
|
||
: ptrunc m (ptrunc n A) ≃* ptrunc n A :=
|
||
pequiv_of_equiv (trunc_trunc_equiv_right A H) idp
|
||
|
||
definition ptrunc_pequiv_ptrunc_of_le {n m : ℕ₋₂} {A B : Type*} (H : n ≤ m)
|
||
(f : ptrunc m A ≃* ptrunc m B) : ptrunc n A ≃* ptrunc n B :=
|
||
(ptrunc_ptrunc_pequiv_left A H)⁻¹ᵉ* ⬝e*
|
||
ptrunc_pequiv_ptrunc n f ⬝e*
|
||
ptrunc_ptrunc_pequiv_left B H
|
||
|
||
definition ptrunc_ptrunc_pequiv_ptrunc_ptrunc [constructor] (n m : ℕ₋₂) (A : Type*)
|
||
: ptrunc n (ptrunc m A) ≃* ptrunc m (ptrunc n A) :=
|
||
pequiv_of_equiv (trunc_trunc_equiv_trunc_trunc n m A) idp
|
||
|
||
definition ptrunc_change_index {k l : ℕ₋₂} (p : k = l) (X : Type*)
|
||
: ptrunc k X ≃* ptrunc l X :=
|
||
pequiv_ap (λ n, ptrunc n X) p
|
||
|
||
definition loop_ptrunc_pequiv [constructor] (n : ℕ₋₂) (A : Type*) :
|
||
Ω (ptrunc (n+1) A) ≃* ptrunc n (Ω A) :=
|
||
pequiv_of_equiv !tr_eq_tr_equiv idp
|
||
|
||
definition loop_ptrunc_pequiv_con {n : ℕ₋₂} {A : Type*} (p q : Ω (ptrunc (n+1) A)) :
|
||
loop_ptrunc_pequiv n A (p ⬝ q) =
|
||
tconcat (loop_ptrunc_pequiv n A p) (loop_ptrunc_pequiv n A q) :=
|
||
encode_con p q
|
||
|
||
definition loopn_ptrunc_pequiv (n : ℕ₋₂) (k : ℕ) (A : Type*) :
|
||
Ω[k] (ptrunc (n+k) A) ≃* ptrunc n (Ω[k] A) :=
|
||
begin
|
||
revert n, induction k with k IH: intro n,
|
||
{ reflexivity},
|
||
{ refine _ ⬝e* loop_ptrunc_pequiv n (Ω[k] A),
|
||
change Ω (Ω[k] (ptrunc (n + succ k) A)) ≃* Ω (ptrunc (n + 1) (Ω[k] A)),
|
||
apply loop_pequiv_loop,
|
||
refine _ ⬝e* IH (n.+1),
|
||
exact loopn_pequiv_loopn k (pequiv_of_eq (ap (λn, ptrunc n A) !succ_add_nat⁻¹)) }
|
||
end
|
||
|
||
definition loopn_ptrunc_pequiv_nat (n k : ℕ) (A : Type*) :
|
||
Ω[k] (ptrunc (n + k) A) ≃* ptrunc n (Ω[k] A) :=
|
||
loopn_pequiv_loopn k (ptrunc_change_index (of_nat_add_of_nat n k)⁻¹ A) ⬝e* loopn_ptrunc_pequiv n k A
|
||
|
||
definition loopn_ptrunc_pequiv_con {n : ℕ₋₂} {k : ℕ} {A : Type*}
|
||
(p q : Ω[succ k] (ptrunc (n+succ k) A)) :
|
||
loopn_ptrunc_pequiv n (succ k) A (p ⬝ q) =
|
||
tconcat (loopn_ptrunc_pequiv n (succ k) A p)
|
||
(loopn_ptrunc_pequiv n (succ k) A q) :=
|
||
begin
|
||
refine _ ⬝ loop_ptrunc_pequiv_con _ _,
|
||
exact ap !loop_ptrunc_pequiv !loop_pequiv_loop_con
|
||
end
|
||
|
||
definition loopn_ptrunc_pequiv_inv_con {n : ℕ₋₂} {k : ℕ} {A : Type*}
|
||
(p q : ptrunc n (Ω[succ k] A)) :
|
||
(loopn_ptrunc_pequiv n (succ k) A)⁻¹ᵉ* (tconcat p q) =
|
||
(loopn_ptrunc_pequiv n (succ k) A)⁻¹ᵉ* p ⬝
|
||
(loopn_ptrunc_pequiv n (succ k) A)⁻¹ᵉ* q :=
|
||
equiv.inv_preserve_binary (loopn_ptrunc_pequiv n (succ k) A) concat tconcat
|
||
(@loopn_ptrunc_pequiv_con n k A) p q
|
||
|
||
/- pointed homotopies involving ptrunc -/
|
||
definition ptrunc_functor_pcompose [constructor] {X Y Z : Type*} (n : ℕ₋₂) (g : Y →* Z)
|
||
(f : X →* Y) : ptrunc_functor n (g ∘* f) ~* ptrunc_functor n g ∘* ptrunc_functor n f :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ apply trunc_functor_compose},
|
||
{ esimp, refine !idp_con ⬝ _, refine whisker_right _ !ap_compose' ⬝ _,
|
||
esimp, refine whisker_right _ (ap_compose tr g _) ⬝ _, exact !ap_con⁻¹},
|
||
end
|
||
|
||
definition ptrunc_functor_pid [constructor] (X : Type*) (n : ℕ₋₂) :
|
||
ptrunc_functor n (pid X) ~* pid (ptrunc n X) :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ apply trunc_functor_id},
|
||
{ reflexivity},
|
||
end
|
||
|
||
definition ptrunc_functor_pcast [constructor] {X Y : Type*} (n : ℕ₋₂) (p : X = Y) :
|
||
ptrunc_functor n (pcast p) ~* pcast (ap (ptrunc n) p) :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ intro x, esimp, refine !trunc_functor_cast ⬝ _, refine ap010 cast _ x,
|
||
refine !ap_compose' ⬝ !ap_compose },
|
||
{ induction p, reflexivity},
|
||
end
|
||
|
||
definition ptrunc_functor_phomotopy [constructor] {X Y : Type*} (n : ℕ₋₂) {f g : X →* Y}
|
||
(p : f ~* g) : ptrunc_functor n f ~* ptrunc_functor n g :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ exact trunc_functor_homotopy n p},
|
||
{ esimp, refine !ap_con⁻¹ ⬝ _, exact ap02 tr !to_homotopy_pt},
|
||
end
|
||
|
||
definition pcast_ptrunc [constructor] (n : ℕ₋₂) {A B : Type*} (p : A = B) :
|
||
pcast (ap (ptrunc n) p) ~* ptrunc_functor n (pcast p) :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ intro a, induction p, esimp, exact !trunc_functor_id⁻¹},
|
||
{ induction p, reflexivity}
|
||
end
|
||
|
||
definition ptrunc_elim_ptr [constructor] (n : ℕ₋₂) {X Y : Type*} [is_trunc n Y] (f : X →* Y) :
|
||
ptrunc.elim n f ∘* ptr n X ~* f :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ reflexivity },
|
||
{ reflexivity }
|
||
end
|
||
|
||
definition ptrunc_elim_phomotopy (n : ℕ₋₂) {X Y : Type*} [is_trunc n Y] {f g : X →* Y}
|
||
(H : f ~* g) : ptrunc.elim n f ~* ptrunc.elim n g :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ intro x, induction x with x, exact H x },
|
||
{ exact to_homotopy_pt H }
|
||
end
|
||
|
||
definition ap1_ptrunc_functor (n : ℕ₋₂) {A B : Type*} (f : A →* B) :
|
||
Ω→ (ptrunc_functor (n.+1) f) ∘* (loop_ptrunc_pequiv n A)⁻¹ᵉ* ~*
|
||
(loop_ptrunc_pequiv n B)⁻¹ᵉ* ∘* ptrunc_functor n (Ω→ f) :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ intro p, induction p with p,
|
||
refine (!ap_inv⁻¹ ◾ !ap_compose⁻¹ ◾ idp) ⬝ _ ⬝ !ap_con⁻¹,
|
||
apply whisker_right, refine _ ⬝ !ap_con⁻¹, exact whisker_left _ !ap_compose },
|
||
{ induction B with B b, induction f with f p, esimp at f, esimp at p, induction p, reflexivity }
|
||
end
|
||
|
||
definition ap1_ptrunc_elim (n : ℕ₋₂) {A B : Type*} (f : A →* B) [is_trunc (n.+1) B] :
|
||
Ω→ (ptrunc.elim (n.+1) f) ∘* (loop_ptrunc_pequiv n A)⁻¹ᵉ* ~*
|
||
ptrunc.elim n (Ω→ f) :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ intro p, induction p with p, exact idp ◾ !ap_compose⁻¹ ◾ idp },
|
||
{ reflexivity }
|
||
end
|
||
|
||
definition ap1_ptr (n : ℕ₋₂) (A : Type*) :
|
||
Ω→ (ptr (n.+1) A) ~* (loop_ptrunc_pequiv n A)⁻¹ᵉ* ∘* ptr n (Ω A) :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ intro p, apply idp_con },
|
||
{ reflexivity }
|
||
end
|
||
|
||
definition ptrunc_elim_ptrunc_functor (n : ℕ₋₂) {A B C : Type*} (g : B →* C) (f : A →* B)
|
||
[is_trunc n C] :
|
||
ptrunc.elim n g ∘* ptrunc_functor n f ~* ptrunc.elim n (g ∘* f) :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ intro x, induction x with a, reflexivity },
|
||
{ esimp, exact !idp_con ⬝ whisker_right _ !ap_compose },
|
||
end
|
||
|
||
definition ptrunc_pequiv_natural [constructor] (n : ℕ₋₂) {A B : Type*} (f : A →* B) [is_trunc n A]
|
||
[is_trunc n B] : f ∘* ptrunc_pequiv n A ~* ptrunc_pequiv n B ∘* ptrunc_functor n f :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ intro a, induction a with a, reflexivity },
|
||
{ refine !idp_con ⬝ _ ⬝ !idp_con⁻¹, refine !ap_compose' ⬝ _, apply ap_id }
|
||
end
|
||
|
||
definition ptr_natural [constructor] (n : ℕ₋₂) {A B : Type*} (f : A →* B) :
|
||
ptrunc_functor n f ∘* ptr n A ~* ptr n B ∘* f :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ intro a, reflexivity },
|
||
{ reflexivity }
|
||
end
|
||
|
||
definition ptrunc_elim_pcompose (n : ℕ₋₂) {A B C : Type*} (g : B →* C) (f : A →* B) [is_trunc n B]
|
||
[is_trunc n C] : ptrunc.elim n (g ∘* f) ~* g ∘* ptrunc.elim n f :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ intro a, induction a with a, reflexivity },
|
||
{ apply idp_con }
|
||
end
|
||
|
||
definition ptrunc_elim_ptr_phomotopy_pid (n : ℕ₋₂) (A : Type*):
|
||
ptrunc.elim n (ptr n A) ~* pid (ptrunc n A) :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ intro a, induction a with a, reflexivity },
|
||
{ apply idp_con }
|
||
end
|
||
|
||
section psquare
|
||
variables {A₀₀ A₂₀ A₀₂ A₂₂ : Type*}
|
||
{f₁₀ : A₀₀ →* A₂₀} {f₁₂ : A₀₂ →* A₂₂}
|
||
{f₀₁ : A₀₀ →* A₀₂} {f₂₁ : A₂₀ →* A₂₂}
|
||
|
||
definition ptrunc_functor_psquare (n : ℕ₋₂) (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||
psquare (ptrunc_functor n f₁₀) (ptrunc_functor n f₁₂)
|
||
(ptrunc_functor n f₀₁) (ptrunc_functor n f₂₁) :=
|
||
!ptrunc_functor_pcompose⁻¹* ⬝* ptrunc_functor_phomotopy n p ⬝* !ptrunc_functor_pcompose
|
||
|
||
end psquare
|
||
|
||
definition is_equiv_ptrunc_functor_ptr [constructor] (A : Type*) {n m : ℕ₋₂} (H : n ≤ m)
|
||
: is_equiv (ptrunc_functor n (ptr m A)) :=
|
||
to_is_equiv (trunc_trunc_equiv_left A H)⁻¹ᵉ
|
||
|
||
-- The following pointed equivalence can be defined more easily, but now we get the right maps definitionally
|
||
definition ptrunc_pequiv_ptrunc_of_is_trunc {n m k : ℕ₋₂} {A : Type*}
|
||
(H1 : n ≤ m) (H2 : n ≤ k) (H : is_trunc n A) : ptrunc m A ≃* ptrunc k A :=
|
||
have is_trunc m A, from is_trunc_of_le A H1,
|
||
have is_trunc k A, from is_trunc_of_le A H2,
|
||
pequiv.MK (ptrunc.elim _ (ptr k A)) (ptrunc.elim _ (ptr m A))
|
||
abstract begin
|
||
refine !ptrunc_elim_pcompose⁻¹* ⬝* _,
|
||
exact ptrunc_elim_phomotopy _ !ptrunc_elim_ptr ⬝* !ptrunc_elim_ptr_phomotopy_pid,
|
||
end end
|
||
abstract begin
|
||
refine !ptrunc_elim_pcompose⁻¹* ⬝* _,
|
||
exact ptrunc_elim_phomotopy _ !ptrunc_elim_ptr ⬝* !ptrunc_elim_ptr_phomotopy_pid,
|
||
end end
|
||
|
||
/- A more general version of ptrunc_elim_phomotopy, where the proofs of truncatedness might be different -/
|
||
definition ptrunc_elim_phomotopy2 [constructor] (k : ℕ₋₂) {A B : Type*} {f g : A →* B} (H₁ : is_trunc k B)
|
||
(H₂ : is_trunc k B) (p : f ~* g) : @ptrunc.elim k A B H₁ f ~* @ptrunc.elim k A B H₂ g :=
|
||
begin
|
||
fapply phomotopy.mk,
|
||
{ intro x, induction x with a, exact p a },
|
||
{ exact to_homotopy_pt p }
|
||
end
|
||
|
||
definition pmap_ptrunc_equiv [constructor] (n : ℕ₋₂) (A B : Type*) [H : is_trunc n B] :
|
||
(ptrunc n A →* B) ≃ (A →* B) :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{ intro g, exact g ∘* ptr n A },
|
||
{ exact ptrunc.elim n },
|
||
{ intro f, apply eq_of_phomotopy, apply ptrunc_elim_ptr },
|
||
{ intro g, apply eq_of_phomotopy,
|
||
exact ptrunc_elim_pcompose n g (ptr n A) ⬝* pwhisker_left g (ptrunc_elim_ptr_phomotopy_pid n A) ⬝*
|
||
pcompose_pid g }
|
||
end
|
||
|
||
definition pmap_ptrunc_pequiv [constructor] (n : ℕ₋₂) (A B : Type*) [H : is_trunc n B] :
|
||
ppmap (ptrunc n A) B ≃* ppmap A B :=
|
||
pequiv_of_equiv (pmap_ptrunc_equiv n A B) (eq_of_phomotopy (pconst_pcompose (ptr n A)))
|
||
|
||
definition ptrunctype.sigma_char [constructor] (n : ℕ₋₂) :
|
||
n-Type* ≃ Σ(X : Type*), is_trunc n X :=
|
||
equiv.MK (λX, ⟨ptrunctype.to_pType X, _⟩)
|
||
(λX, ptrunctype.mk (carrier X.1) X.2 pt)
|
||
begin intro X, induction X with X HX, induction X, reflexivity end
|
||
begin intro X, induction X, reflexivity end
|
||
|
||
definition is_embedding_ptrunctype_to_pType (n : ℕ₋₂) : is_embedding (@ptrunctype.to_pType n) :=
|
||
begin
|
||
intro X Y, fapply is_equiv_of_equiv_of_homotopy,
|
||
{ exact eq_equiv_fn_eq (ptrunctype.sigma_char n) _ _ ⬝e subtype_eq_equiv _ _ },
|
||
intro p, induction p, reflexivity
|
||
end
|
||
|
||
definition ptrunctype_eq_equiv {n : ℕ₋₂} (X Y : n-Type*) : (X = Y) ≃ (X ≃* Y) :=
|
||
equiv.mk _ (is_embedding_ptrunctype_to_pType n X Y) ⬝e pType_eq_equiv X Y
|
||
|
||
definition Prop_eq {P Q : Prop} (H : P ↔ Q) : P = Q :=
|
||
tua (equiv_of_is_prop (iff.mp H) (iff.mpr H))
|
||
|
||
end trunc open trunc
|
||
|
||
/- The truncated encode-decode method -/
|
||
namespace eq
|
||
|
||
definition truncated_encode {k : ℕ₋₂} {A : Type} {a₀ a : A} {code : A → Type}
|
||
[Πa, is_trunc k (code a)] (c₀ : code a₀) (p : trunc k (a₀ = a)) : code a :=
|
||
begin
|
||
induction p with p,
|
||
exact transport code p c₀
|
||
end
|
||
|
||
definition truncated_encode_decode_method {k : ℕ₋₂} {A : Type} (a₀ a : A) (code : A → Type)
|
||
[Πa, is_trunc k (code a)] (c₀ : code a₀)
|
||
(decode : Π(a : A) (c : code a), trunc k (a₀ = a))
|
||
(encode_decode : Π(a : A) (c : code a), truncated_encode c₀ (decode a c) = c)
|
||
(decode_encode : decode a₀ c₀ = tr idp) : trunc k (a₀ = a) ≃ code a :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{ exact truncated_encode c₀},
|
||
{ apply decode},
|
||
{ intro c, apply encode_decode},
|
||
{ intro p, induction p with p, induction p, exact decode_encode},
|
||
end
|
||
|
||
end eq
|
||
|
||
|
||
/- some consequences for properties about functions (surjectivity etc.) -/
|
||
namespace function
|
||
variables {A B : Type}
|
||
definition is_surjective_of_is_equiv [instance] (f : A → B) [H : is_equiv f] : is_surjective f :=
|
||
λb, begin esimp, apply center, apply is_trunc_trunc_of_is_trunc end
|
||
|
||
definition is_equiv_equiv_is_embedding_times_is_surjective [constructor] (f : A → B)
|
||
: is_equiv f ≃ (is_embedding f × is_surjective f) :=
|
||
equiv_of_is_prop (λH, (_, _))
|
||
(λP, prod.rec_on P (λH₁ H₂, !is_equiv_of_is_surjective_of_is_embedding))
|
||
|
||
/-
|
||
Theorem 8.8.1:
|
||
A function is an equivalence if it's an embedding and it's action on sets is an surjection
|
||
-/
|
||
definition is_equiv_of_is_surjective_trunc_of_is_embedding {A B : Type} (f : A → B)
|
||
[H : is_embedding f] [H' : is_surjective (trunc_functor 0 f)] : is_equiv f :=
|
||
have is_surjective f,
|
||
begin
|
||
intro b,
|
||
induction H' (tr b) with a p,
|
||
induction a with a, esimp at p,
|
||
induction (tr_eq_tr_equiv _ _ _ p) with q,
|
||
exact image.mk a q
|
||
end,
|
||
is_equiv_of_is_surjective_of_is_embedding f
|
||
|
||
/-
|
||
Corollary 8.8.2:
|
||
A function f is an equivalence if Ωf and trunc_functor 0 f are equivalences
|
||
-/
|
||
definition is_equiv_of_is_equiv_ap1_of_is_equiv_trunc {A B : Type} (f : A → B)
|
||
[H : Πa, is_equiv (ap1 (pmap_of_map f a))] [H' : is_equiv (trunc_functor 0 f)] :
|
||
is_equiv f :=
|
||
have is_embedding f,
|
||
begin
|
||
intro a a',
|
||
apply is_equiv_of_imp_is_equiv,
|
||
intro p,
|
||
note q := ap (@tr 0 _) p,
|
||
note r := @(inj' (trunc_functor 0 f)) _ (tr a) (tr a') q,
|
||
induction (tr_eq_tr_equiv _ _ _ r) with s,
|
||
induction s,
|
||
apply is_equiv.homotopy_closed (ap1 (pmap_of_map f a)),
|
||
intro p, apply idp_con
|
||
end,
|
||
is_equiv_of_is_surjective_trunc_of_is_embedding f
|
||
|
||
-- Whitehead's principle itself is in homotopy.homotopy_group, since it needs the definition of
|
||
-- a homotopy group.
|
||
|
||
end function
|
||
|
||
/- functions between ℤ and ℕ₋₂ -/
|
||
namespace int
|
||
|
||
private definition maxm2_le.lemma₁ {n k : ℕ} : n+(1:int) + -[1+ k] ≤ n :=
|
||
le.intro (
|
||
calc n + 1 + -[1+ k] + k
|
||
= n + 1 + (-(k + 1)) + k : by reflexivity
|
||
... = n + 1 + (- 1 - k) + k : by krewrite (neg_add_rev k 1)
|
||
... = n + 1 + (- 1 - k + k) : add.assoc
|
||
... = n + 1 + (- 1 + -k + k) : by reflexivity
|
||
... = n + 1 + (- 1 + (-k + k)) : add.assoc
|
||
... = n + 1 + (- 1 + 0) : add.left_inv
|
||
... = n + (1 + (- 1 + 0)) : add.assoc
|
||
... = n : int.add_zero)
|
||
|
||
private definition maxm2_le.lemma₂ {n : ℕ} {k : ℤ} : -[1+ n] + 1 + k ≤ k :=
|
||
le.intro (
|
||
calc -[1+ n] + 1 + k + n
|
||
= - (n + 1) + 1 + k + n : by reflexivity
|
||
... = -n - 1 + 1 + k + n : by rewrite (neg_add n 1)
|
||
... = -n + (- 1 + 1) + k + n : by krewrite (int.add_assoc (-n) (- 1) 1)
|
||
... = -n + 0 + k + n : add.left_inv 1
|
||
... = -n + k + n : int.add_zero
|
||
... = k + -n + n : int.add_comm
|
||
... = k + (-n + n) : int.add_assoc
|
||
... = k + 0 : add.left_inv n
|
||
... = k : int.add_zero)
|
||
|
||
open trunc_index
|
||
/-
|
||
The function from integers to truncation indices which sends
|
||
positive numbers to themselves, and negative numbers to negative
|
||
2. In particular -1 is sent to -2, but since we only work with
|
||
pointed types, that doesn't matter for us -/
|
||
definition maxm2 [unfold 1] : ℤ → ℕ₋₂ :=
|
||
λ n, int.cases_on n trunc_index.of_nat (λk, -2)
|
||
|
||
-- we also need the max -1 - function
|
||
definition maxm1 [unfold 1] : ℤ → ℕ₋₂ :=
|
||
λ n, int.cases_on n trunc_index.of_nat (λk, -1)
|
||
|
||
definition maxm2_le_maxm1 (n : ℤ) : maxm2 n ≤ maxm1 n :=
|
||
begin
|
||
induction n with n n,
|
||
{ exact le.tr_refl n },
|
||
{ exact minus_two_le -1 }
|
||
end
|
||
|
||
-- the is maxm1 minus 1
|
||
definition maxm1m1 [unfold 1] : ℤ → ℕ₋₂ :=
|
||
λ n, int.cases_on n (λ k, k.-1) (λ k, -2)
|
||
|
||
definition maxm1_eq_succ (n : ℤ) : maxm1 n = (maxm1m1 n).+1 :=
|
||
begin
|
||
induction n with n n,
|
||
{ reflexivity },
|
||
{ reflexivity }
|
||
end
|
||
|
||
definition maxm2_le_maxm0 (n : ℤ) : maxm2 n ≤ max0 n :=
|
||
begin
|
||
induction n with n n,
|
||
{ exact le.tr_refl n },
|
||
{ exact minus_two_le 0 }
|
||
end
|
||
|
||
definition max0_le_of_le {n : ℤ} {m : ℕ} (H : n ≤ of_nat m)
|
||
: nat.le (max0 n) m :=
|
||
begin
|
||
induction n with n n,
|
||
{ exact le_of_of_nat_le_of_nat H },
|
||
{ exact nat.zero_le m }
|
||
end
|
||
|
||
definition not_neg_succ_le_of_nat {n m : ℕ} : ¬m ≤ -[1+n] :=
|
||
by cases m: exact id
|
||
|
||
definition maxm2_monotone {n m : ℤ} (H : n ≤ m) : maxm2 n ≤ maxm2 m :=
|
||
begin
|
||
induction n with n n,
|
||
{ induction m with m m,
|
||
{ apply of_nat_le_of_nat, exact le_of_of_nat_le_of_nat H },
|
||
{ exfalso, exact not_neg_succ_le_of_nat H }},
|
||
{ apply minus_two_le }
|
||
end
|
||
|
||
definition sub_nat_le (n : ℤ) (m : ℕ) : n - m ≤ n :=
|
||
le.intro !sub_add_cancel
|
||
|
||
definition sub_nat_lt (n : ℤ) (m : ℕ) : n - m < n + 1 :=
|
||
add_le_add_right (sub_nat_le n m) 1
|
||
|
||
definition sub_one_le (n : ℤ) : n - 1 ≤ n :=
|
||
sub_nat_le n 1
|
||
|
||
definition le_add_nat (n : ℤ) (m : ℕ) : n ≤ n + m :=
|
||
le.intro rfl
|
||
|
||
definition le_add_one (n : ℤ) : n ≤ n + 1:=
|
||
le_add_nat n 1
|
||
|
||
open trunc_index
|
||
|
||
definition maxm2_le (n k : ℤ) : maxm2 (n+1+k) ≤ (maxm1m1 n).+1+2+(maxm1m1 k) :=
|
||
begin
|
||
rewrite [-(maxm1_eq_succ n)],
|
||
induction n with n n,
|
||
{ induction k with k k,
|
||
{ induction k with k IH,
|
||
{ apply le.tr_refl },
|
||
{ exact succ_le_succ IH } },
|
||
{ exact trunc_index.le_trans (maxm2_monotone maxm2_le.lemma₁)
|
||
(maxm2_le_maxm1 n) } },
|
||
{ krewrite (add_plus_two_comm -1 (maxm1m1 k)),
|
||
rewrite [-(maxm1_eq_succ k)],
|
||
exact trunc_index.le_trans (maxm2_monotone maxm2_le.lemma₂)
|
||
(maxm2_le_maxm1 k) }
|
||
end
|
||
|
||
end int open int
|