lean2/hott/cubical/square.hlean

502 lines
25 KiB
Text

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Floris van Doorn
Squares in a type
-/
import types.eq
open eq equiv is_equiv sigma
namespace eq
variables {A B : Type} {a a' a'' a₀₀ a₂₀ a₄₀ a₀₂ a₂₂ a₂₄ a₀₄ a₄₂ a₄₄ a₁ a₂ a₃ a₄ : A}
/-a₀₀-/ {p₁₀ p₁₀' : a₀₀ = a₂₀} /-a₂₀-/ {p₃₀ : a₂₀ = a₄₀} /-a₄₀-/
{p₀₁ p₀₁' : a₀₀ = a₀₂} /-s₁₁-/ {p₂₁ p₂₁' : a₂₀ = a₂₂} /-s₃₁-/ {p₄₁ : a₄₀ = a₄₂}
/-a₀₂-/ {p₁₂ p₁₂' : a₀₂ = a₂₂} /-a₂₂-/ {p₃₂ : a₂₂ = a₄₂} /-a₄₂-/
{p₀₃ : a₀₂ = a₀₄} /-s₁₃-/ {p₂₃ : a₂₂ = a₂₄} /-s₃₃-/ {p₄₃ : a₄₂ = a₄₄}
/-a₀₄-/ {p₁₄ : a₀₄ = a₂₄} /-a₂₄-/ {p₃₄ : a₂₄ = a₄₄} /-a₄₄-/
inductive square {A : Type} {a₀₀ : A}
: Π{a₂₀ a₀₂ a₂₂ : A}, a₀₀ = a₂₀ → a₀₂ = a₂₂ → a₀₀ = a₀₂ → a₂₀ = a₂₂ → Type :=
ids : square idp idp idp idp
/- square top bottom left right -/
variables {s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁} {s₃₁ : square p₃₀ p₃₂ p₂₁ p₄₁}
{s₁₃ : square p₁₂ p₁₄ p₀₃ p₂₃} {s₃₃ : square p₃₂ p₃₄ p₂₃ p₄₃}
definition ids [reducible] [constructor] := @square.ids
definition idsquare [reducible] [constructor] (a : A) := @square.ids A a
definition hrefl [unfold 4] (p : a = a') : square idp idp p p :=
by induction p; exact ids
definition vrefl [unfold 4] (p : a = a') : square p p idp idp :=
by induction p; exact ids
definition hrfl [reducible] [unfold 4] {p : a = a'} : square idp idp p p :=
!hrefl
definition vrfl [reducible] [unfold 4] {p : a = a'} : square p p idp idp :=
!vrefl
definition hdeg_square [unfold 6] {p q : a = a'} (r : p = q) : square idp idp p q :=
by induction r;apply hrefl
definition vdeg_square [unfold 6] {p q : a = a'} (r : p = q) : square p q idp idp :=
by induction r;apply vrefl
definition hconcat [unfold 16] (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) (s₃₁ : square p₃₀ p₃₂ p₂₁ p₄₁)
: square (p₁₀ ⬝ p₃₀) (p₁₂ ⬝ p₃₂) p₀₁ p₄₁ :=
by induction s₃₁; exact s₁₁
definition vconcat [unfold 16] (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) (s₁₃ : square p₁₂ p₁₄ p₀₃ p₂₃)
: square p₁₀ p₁₄ (p₀₁ ⬝ p₀₃) (p₂₁ ⬝ p₂₃) :=
by induction s₁₃; exact s₁₁
definition hinverse [unfold 10] (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) : square p₁₀⁻¹ p₁₂⁻¹ p₂₁ p₀₁ :=
by induction s₁₁;exact ids
definition vinverse [unfold 10] (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) : square p₁₂ p₁₀ p₀₁⁻¹ p₂₁⁻¹ :=
by induction s₁₁;exact ids
definition eq_vconcat [unfold 11] {p : a₀₀ = a₂₀} (r : p = p₁₀) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) :
square p p₁₂ p₀₁ p₂₁ :=
by induction r; exact s₁₁
definition vconcat_eq [unfold 12] {p : a₀₂ = a₂₂} (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) (r : p₁₂ = p) :
square p₁₀ p p₀₁ p₂₁ :=
by induction r; exact s₁₁
definition eq_hconcat [unfold 11] {p : a₀₀ = a₀₂} (r : p = p₀₁) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) :
square p₁₀ p₁₂ p p₂₁ :=
by induction r; exact s₁₁
definition hconcat_eq [unfold 12] {p : a₂₀ = a₂₂} (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) (r : p₂₁ = p) :
square p₁₀ p₁₂ p₀₁ p :=
by induction r; exact s₁₁
infix ` ⬝h `:75 := hconcat
infix ` ⬝v `:75 := vconcat
infix ` ⬝hp `:75 := hconcat_eq
infix ` ⬝vp `:75 := vconcat_eq
infix ` ⬝ph `:75 := eq_hconcat
infix ` ⬝pv `:75 := eq_vconcat
postfix `⁻¹ʰ`:(max+1) := hinverse
postfix `⁻¹ᵛ`:(max+1) := vinverse
definition transpose [unfold 10] (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) : square p₀₁ p₂₁ p₁₀ p₁₂ :=
by induction s₁₁;exact ids
definition aps [unfold 12] {B : Type} (f : A → B) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁)
: square (ap f p₁₀) (ap f p₁₂) (ap f p₀₁) (ap f p₂₁) :=
by induction s₁₁;exact ids
definition natural_square [unfold 8] {f g : A → B} (p : f ~ g) (q : a = a') :
square (ap f q) (ap g q) (p a) (p a') :=
eq.rec_on q hrfl
definition natural_square_tr [unfold 8] {f g : A → B} (p : f ~ g) (q : a = a') :
square (p a) (p a') (ap f q) (ap g q) :=
eq.rec_on q vrfl
/- canceling, whiskering and moving thinks along the sides of the square -/
definition whisker_tl (p : a = a₀₀) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁)
: square (p ⬝ p₁₀) p₁₂ (p ⬝ p₀₁) p₂₁ :=
by induction s₁₁;induction p;constructor
definition whisker_br (p : a₂₂ = a) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁)
: square p₁₀ (p₁₂ ⬝ p) p₀₁ (p₂₁ ⬝ p) :=
by induction p;exact s₁₁
definition whisker_rt (p : a = a₂₀) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁)
: square (p₁₀ ⬝ p⁻¹) p₁₂ p₀₁ (p ⬝ p₂₁) :=
by induction s₁₁;induction p;constructor
definition whisker_tr (p : a₂₀ = a) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁)
: square (p₁₀ ⬝ p) p₁₂ p₀₁ (p⁻¹ ⬝ p₂₁) :=
by induction s₁₁;induction p;constructor
definition whisker_bl (p : a = a₀₂) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁)
: square p₁₀ (p ⬝ p₁₂) (p₀₁ ⬝ p⁻¹) p₂₁ :=
by induction s₁₁;induction p;constructor
definition whisker_lb (p : a₀₂ = a) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁)
: square p₁₀ (p⁻¹ ⬝ p₁₂) (p₀₁ ⬝ p) p₂₁ :=
by induction s₁₁;induction p;constructor
definition cancel_tl (p : a = a₀₀) (s₁₁ : square (p ⬝ p₁₀) p₁₂ (p ⬝ p₀₁) p₂₁)
: square p₁₀ p₁₂ p₀₁ p₂₁ :=
by induction p; rewrite +idp_con at s₁₁; exact s₁₁
definition cancel_br (p : a₂₂ = a) (s₁₁ : square p₁₀ (p₁₂ ⬝ p) p₀₁ (p₂₁ ⬝ p))
: square p₁₀ p₁₂ p₀₁ p₂₁ :=
by induction p;exact s₁₁
definition cancel_rt (p : a = a₂₀) (s₁₁ : square (p₁₀ ⬝ p⁻¹) p₁₂ p₀₁ (p ⬝ p₂₁))
: square p₁₀ p₁₂ p₀₁ p₂₁ :=
by induction p; rewrite idp_con at s₁₁; exact s₁₁
definition cancel_tr (p : a₂₀ = a) (s₁₁ : square (p₁₀ ⬝ p) p₁₂ p₀₁ (p⁻¹ ⬝ p₂₁))
: square p₁₀ p₁₂ p₀₁ p₂₁ :=
by induction p; rewrite [▸* at s₁₁,idp_con at s₁₁]; exact s₁₁
definition cancel_bl (p : a = a₀₂) (s₁₁ : square p₁₀ (p ⬝ p₁₂) (p₀₁ ⬝ p⁻¹) p₂₁)
: square p₁₀ p₁₂ p₀₁ p₂₁ :=
by induction p; rewrite idp_con at s₁₁; exact s₁₁
definition cancel_lb (p : a₀₂ = a) (s₁₁ : square p₁₀ (p⁻¹ ⬝ p₁₂) (p₀₁ ⬝ p) p₂₁)
: square p₁₀ p₁₂ p₀₁ p₂₁ :=
by induction p; rewrite [▸* at s₁₁,idp_con at s₁₁]; exact s₁₁
definition move_top_of_left {p : a₀₀ = a} {q : a = a₀₂} (s : square p₁₀ p₁₂ (p ⬝ q) p₂₁)
: square (p⁻¹ ⬝ p₁₀) p₁₂ q p₂₁ :=
by apply cancel_tl p; rewrite con_inv_cancel_left; exact s
definition move_top_of_left' {p : a = a₀₀} {q : a = a₀₂} (s : square p₁₀ p₁₂ (p⁻¹ ⬝ q) p₂₁)
: square (p ⬝ p₁₀) p₁₂ q p₂₁ :=
by apply cancel_tl p⁻¹; rewrite inv_con_cancel_left; exact s
definition move_left_of_top {p : a₀₀ = a} {q : a = a₂₀} (s : square (p ⬝ q) p₁₂ p₀₁ p₂₁)
: square q p₁₂ (p⁻¹ ⬝ p₀₁) p₂₁ :=
by apply cancel_tl p; rewrite con_inv_cancel_left; exact s
definition move_left_of_top' {p : a = a₀₀} {q : a = a₂₀} (s : square (p⁻¹ ⬝ q) p₁₂ p₀₁ p₂₁)
: square q p₁₂ (p ⬝ p₀₁) p₂₁ :=
by apply cancel_tl p⁻¹; rewrite inv_con_cancel_left; exact s
definition move_bot_of_right {p : a₂₀ = a} {q : a = a₂₂} (s : square p₁₀ p₁₂ p₀₁ (p ⬝ q))
: square p₁₀ (p₁₂ ⬝ q⁻¹) p₀₁ p :=
by apply cancel_br q; rewrite inv_con_cancel_right; exact s
definition move_bot_of_right' {p : a₂₀ = a} {q : a₂₂ = a} (s : square p₁₀ p₁₂ p₀₁ (p ⬝ q⁻¹))
: square p₁₀ (p₁₂ ⬝ q) p₀₁ p :=
by apply cancel_br q⁻¹; rewrite con_inv_cancel_right; exact s
definition move_right_of_bot {p : a₀₂ = a} {q : a = a₂₂} (s : square p₁₀ (p ⬝ q) p₀₁ p₂₁)
: square p₁₀ p p₀₁ (p₂₁ ⬝ q⁻¹) :=
by apply cancel_br q; rewrite inv_con_cancel_right; exact s
definition move_right_of_bot' {p : a₀₂ = a} {q : a₂₂ = a} (s : square p₁₀ (p ⬝ q⁻¹) p₀₁ p₂₁)
: square p₁₀ p p₀₁ (p₂₁ ⬝ q) :=
by apply cancel_br q⁻¹; rewrite con_inv_cancel_right; exact s
definition move_top_of_right {p : a₂₀ = a} {q : a = a₂₂} (s : square p₁₀ p₁₂ p₀₁ (p ⬝ q))
: square (p₁₀ ⬝ p) p₁₂ p₀₁ q :=
by apply cancel_rt p; rewrite con_inv_cancel_right; exact s
definition move_right_of_top {p : a₀₀ = a} {q : a = a₂₀} (s : square (p ⬝ q) p₁₂ p₀₁ p₂₁)
: square p p₁₂ p₀₁ (q ⬝ p₂₁) :=
by apply cancel_tr q; rewrite inv_con_cancel_left; exact s
definition move_bot_of_left {p : a₀₀ = a} {q : a = a₀₂} (s : square p₁₀ p₁₂ (p ⬝ q) p₂₁)
: square p₁₀ (q ⬝ p₁₂) p p₂₁ :=
by apply cancel_lb q; rewrite inv_con_cancel_left; exact s
definition move_left_of_bot {p : a₀₂ = a} {q : a = a₂₂} (s : square p₁₀ (p ⬝ q) p₀₁ p₂₁)
: square p₁₀ q (p₀₁ ⬝ p) p₂₁ :=
by apply cancel_bl p; rewrite con_inv_cancel_right; exact s
/- some higher ∞-groupoid operations -/
definition vconcat_vrfl (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁)
: s₁₁ ⬝v vrefl p₁₂ = s₁₁ :=
by induction s₁₁; reflexivity
definition hconcat_hrfl (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁)
: s₁₁ ⬝h hrefl p₂₁ = s₁₁ :=
by induction s₁₁; reflexivity
/- equivalences -/
definition eq_of_square [unfold 10] (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) : p₁₀ ⬝ p₂₁ = p₀₁ ⬝ p₁₂ :=
by induction s₁₁; apply idp
definition square_of_eq (r : p₁₀ ⬝ p₂₁ = p₀₁ ⬝ p₁₂) : square p₁₀ p₁₂ p₀₁ p₂₁ :=
by induction p₁₂; esimp at r; induction r; induction p₂₁; induction p₁₀; exact ids
definition eq_top_of_square [unfold 10] (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁)
: p₁₀ = p₀₁ ⬝ p₁₂ ⬝ p₂₁⁻¹ :=
by induction s₁₁; apply idp
definition square_of_eq_top (r : p₁₀ = p₀₁ ⬝ p₁₂ ⬝ p₂₁⁻¹) : square p₁₀ p₁₂ p₀₁ p₂₁ :=
by induction p₂₁; induction p₁₂; esimp at r;induction r;induction p₁₀;exact ids
definition eq_bot_of_square [unfold 10] (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁)
: p₁₂ = p₀₁⁻¹ ⬝ p₁₀ ⬝ p₂₁ :=
by induction s₁₁; apply idp
definition square_equiv_eq [constructor] (t : a₀₀ = a₀₂) (b : a₂₀ = a₂₂)
(l : a₀₀ = a₂₀) (r : a₀₂ = a₂₂) : square t b l r ≃ t ⬝ r = l ⬝ b :=
begin
fapply equiv.MK,
{ exact eq_of_square},
{ exact square_of_eq},
{ intro s, induction b, esimp [concat] at s, induction s, induction r, induction t, apply idp},
{ intro s, induction s, apply idp},
end
definition hdeg_square_equiv' [constructor] (p q : a = a') : square idp idp p q ≃ p = q :=
by transitivity _;apply square_equiv_eq;transitivity _;apply eq_equiv_eq_symm;
apply equiv_eq_closed_right;apply idp_con
definition vdeg_square_equiv' [constructor] (p q : a = a') : square p q idp idp ≃ p = q :=
by transitivity _;apply square_equiv_eq;apply equiv_eq_closed_right; apply idp_con
definition eq_of_hdeg_square [reducible] {p q : a = a'} (s : square idp idp p q) : p = q :=
to_fun !hdeg_square_equiv' s
definition eq_of_vdeg_square [reducible] {p q : a = a'} (s : square p q idp idp) : p = q :=
to_fun !vdeg_square_equiv' s
definition top_deg_square (l : a₁ = a₂) (b : a₂ = a₃) (r : a₄ = a₃)
: square (l ⬝ b ⬝ r⁻¹) b l r :=
by induction r;induction b;induction l;constructor
definition bot_deg_square (l : a₁ = a₂) (t : a₁ = a₃) (r : a₃ = a₄)
: square t (l⁻¹ ⬝ t ⬝ r) l r :=
by induction r;induction t;induction l;constructor
/-
the following two equivalences have as underlying inverse function the functions
hdeg_square and vdeg_square, respectively.
See example below the definition
-/
definition hdeg_square_equiv [constructor] (p q : a = a') :
square idp idp p q ≃ p = q :=
begin
fapply equiv_change_fun,
{ fapply equiv_change_inv, apply hdeg_square_equiv', exact hdeg_square,
intro s, induction s, induction p, reflexivity},
{ exact eq_of_hdeg_square},
{ reflexivity}
end
definition vdeg_square_equiv [constructor] (p q : a = a') :
square p q idp idp ≃ p = q :=
begin
fapply equiv_change_fun,
{ fapply equiv_change_inv, apply vdeg_square_equiv',exact vdeg_square,
intro s, induction s, induction p, reflexivity},
{ exact eq_of_vdeg_square},
{ reflexivity}
end
example (p q : a = a') : to_inv (hdeg_square_equiv p q) = hdeg_square := idp
/-
characterization of pathovers in a equality type. The type B of the equality is fixed here.
A version where B may also varies over the path p is given in the file squareover
-/
definition eq_pathover [unfold 7] {f g : A → B} {p : a = a'} {q : f a = g a} {r : f a' = g a'}
(s : square q r (ap f p) (ap g p)) : q =[p] r :=
by induction p;apply pathover_idp_of_eq;exact eq_of_vdeg_square s
definition square_of_pathover [unfold 7]
{f g : A → B} {p : a = a'} {q : f a = g a} {r : f a' = g a'}
(s : q =[p] r) : square q r (ap f p) (ap g p) :=
by induction p;apply vdeg_square;exact eq_of_pathover_idp s
/- interaction of equivalences with operations on squares -/
definition eq_pathover_equiv_square [constructor] {f g : A → B}
(p : a = a') (q : f a = g a) (r : f a' = g a') : q =[p] r ≃ square q r (ap f p) (ap g p) :=
equiv.MK square_of_pathover
eq_pathover
begin
intro s, induction p, esimp [square_of_pathover,eq_pathover],
exact ap vdeg_square (to_right_inv !pathover_idp (eq_of_vdeg_square s))
⬝ to_left_inv !vdeg_square_equiv s
end
begin
intro s, induction p, esimp [square_of_pathover,eq_pathover],
exact ap pathover_idp_of_eq (to_right_inv !vdeg_square_equiv (eq_of_pathover_idp s))
⬝ to_left_inv !pathover_idp s
end
definition square_of_pathover_eq_concato {f g : A → B} {p : a = a'} {q q' : f a = g a}
{r : f a' = g a'} (s' : q = q') (s : q' =[p] r)
: square_of_pathover (s' ⬝po s) = s' ⬝pv square_of_pathover s :=
by induction s;induction s';reflexivity
definition square_of_pathover_concato_eq {f g : A → B} {p : a = a'} {q : f a = g a}
{r r' : f a' = g a'} (s' : r = r') (s : q =[p] r)
: square_of_pathover (s ⬝op s') = square_of_pathover s ⬝vp s' :=
by induction s;induction s';reflexivity
definition square_of_pathover_concato {f g : A → B} {p : a = a'} {p' : a' = a''} {q : f a = g a}
{q' : f a' = g a'} {q'' : f a'' = g a''} (s : q =[p] q') (s' : q' =[p'] q'')
: square_of_pathover (s ⬝o s')
= ap_con f p p' ⬝ph (square_of_pathover s ⬝v square_of_pathover s') ⬝hp (ap_con g p p')⁻¹ :=
by induction s';induction s;esimp [ap_con,hconcat_eq];exact !vconcat_vrfl⁻¹
definition eq_of_square_hrfl [unfold 4] (p : a = a') : eq_of_square hrfl = idp_con p :=
by induction p;reflexivity
definition eq_of_square_vrfl [unfold 4] (p : a = a') : eq_of_square vrfl = (idp_con p)⁻¹ :=
by induction p;reflexivity
definition eq_of_square_hdeg_square {p q : a = a'} (r : p = q)
: eq_of_square (hdeg_square r) = !idp_con ⬝ r⁻¹ :=
by induction r;induction p;reflexivity
definition eq_of_square_vdeg_square {p q : a = a'} (r : p = q)
: eq_of_square (vdeg_square r) = r ⬝ !idp_con⁻¹ :=
by induction r;induction p;reflexivity
definition eq_of_square_eq_vconcat {p : a₀₀ = a₂₀} (r : p = p₁₀) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁)
: eq_of_square (r ⬝pv s₁₁) = whisker_right r p₂₁ ⬝ eq_of_square s₁₁ :=
by induction s₁₁;cases r;reflexivity
definition eq_of_square_eq_hconcat {p : a₀₀ = a₀₂} (r : p = p₀₁) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁)
: eq_of_square (r ⬝ph s₁₁) = eq_of_square s₁₁ ⬝ (whisker_right r p₁₂)⁻¹ :=
by induction r;reflexivity
definition eq_of_square_vconcat_eq {p : a₀₂ = a₂₂} (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) (r : p₁₂ = p)
: eq_of_square (s₁₁ ⬝vp r) = eq_of_square s₁₁ ⬝ whisker_left p₀₁ r :=
by induction r;reflexivity
definition eq_of_square_hconcat_eq {p : a₂₀ = a₂₂} (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) (r : p₂₁ = p)
: eq_of_square (s₁₁ ⬝hp r) = (whisker_left p₁₀ r)⁻¹ ⬝ eq_of_square s₁₁ :=
by induction s₁₁; induction r;reflexivity
-- definition vconcat_eq [unfold 11] {p : a₀₂ = a₂₂} (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) (r : p₁₂ = p) :
-- square p₁₀ p p₀₁ p₂₁ :=
-- by induction r; exact s₁₁
-- definition eq_hconcat [unfold 11] {p : a₀₀ = a₀₂} (r : p = p₀₁)
-- (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) : square p₁₀ p₁₂ p p₂₁ :=
-- by induction r; exact s₁₁
-- definition hconcat_eq [unfold 11] {p : a₂₀ = a₂₂}
-- (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) (r : p₂₁ = p) : square p₁₀ p₁₂ p₀₁ p :=
-- by induction r; exact s₁₁
-- the following definition is very slow, maybe it's interesting to see why?
-- definition eq_pathover_equiv_square' {f g : A → B}(p : a = a') (q : f a = g a) (r : f a' = g a')
-- : square q r (ap f p) (ap g p) ≃ q =[p] r :=
-- equiv.MK eq_pathover
-- square_of_pathover
-- (λs, begin
-- induction p, rewrite [↑[square_of_pathover,eq_pathover],
-- to_right_inv !vdeg_square_equiv (eq_of_pathover_idp s),
-- to_left_inv !pathover_idp s]
-- end)
-- (λs, begin
-- induction p, rewrite [↑[square_of_pathover,eq_pathover],▸*,
-- to_right_inv !(@pathover_idp A) (eq_of_vdeg_square s),
-- to_left_inv !vdeg_square_equiv s]
-- end)
/- recursors for squares where some sides are reflexivity -/
definition rec_on_b [recursor] {a₀₀ : A}
{P : Π{a₂₀ a₁₂ : A} {t : a₀₀ = a₂₀} {l : a₀₀ = a₁₂} {r : a₂₀ = a₁₂}, square t idp l r → Type}
{a₂₀ a₁₂ : A} {t : a₀₀ = a₂₀} {l : a₀₀ = a₁₂} {r : a₂₀ = a₁₂}
(s : square t idp l r) (H : P ids) : P s :=
have H2 : P (square_of_eq (eq_of_square s)),
from eq.rec_on (eq_of_square s : t ⬝ r = l) (by induction r; induction t; exact H),
left_inv (to_fun !square_equiv_eq) s ▸ H2
definition rec_on_r [recursor] {a₀₀ : A}
{P : Π{a₀₂ a₂₁ : A} {t : a₀₀ = a₂₁} {b : a₀₂ = a₂₁} {l : a₀₀ = a₀₂}, square t b l idp → Type}
{a₀₂ a₂₁ : A} {t : a₀₀ = a₂₁} {b : a₀₂ = a₂₁} {l : a₀₀ = a₀₂}
(s : square t b l idp) (H : P ids) : P s :=
let p : l ⬝ b = t := (eq_of_square s)⁻¹ in
have H2 : P (square_of_eq (eq_of_square s)⁻¹⁻¹),
from @eq.rec_on _ _ (λx p, P (square_of_eq p⁻¹)) _ p (by induction b; induction l; exact H),
left_inv (to_fun !square_equiv_eq) s ▸ !inv_inv ▸ H2
definition rec_on_l [recursor] {a₀₁ : A}
{P : Π {a₂₀ a₂₂ : A} {t : a₀₁ = a₂₀} {b : a₀₁ = a₂₂} {r : a₂₀ = a₂₂},
square t b idp r → Type}
{a₂₀ a₂₂ : A} {t : a₀₁ = a₂₀} {b : a₀₁ = a₂₂} {r : a₂₀ = a₂₂}
(s : square t b idp r) (H : P ids) : P s :=
let p : t ⬝ r = b := eq_of_square s ⬝ !idp_con in
have H2 : P (square_of_eq (p ⬝ !idp_con⁻¹)),
from eq.rec_on p (by induction r; induction t; exact H),
left_inv (to_fun !square_equiv_eq) s ▸ !con_inv_cancel_right ▸ H2
definition rec_on_t [recursor] {a₁₀ : A}
{P : Π {a₀₂ a₂₂ : A} {b : a₀₂ = a₂₂} {l : a₁₀ = a₀₂} {r : a₁₀ = a₂₂}, square idp b l r → Type}
{a₀₂ a₂₂ : A} {b : a₀₂ = a₂₂} {l : a₁₀ = a₀₂} {r : a₁₀ = a₂₂}
(s : square idp b l r) (H : P ids) : P s :=
let p : l ⬝ b = r := (eq_of_square s)⁻¹ ⬝ !idp_con in
assert H2 : P (square_of_eq ((p ⬝ !idp_con⁻¹)⁻¹)),
from eq.rec_on p (by induction b; induction l; exact H),
assert H3 : P (square_of_eq ((eq_of_square s)⁻¹⁻¹)),
from eq.rec_on !con_inv_cancel_right H2,
assert H4 : P (square_of_eq (eq_of_square s)),
from eq.rec_on !inv_inv H3,
proof
left_inv (to_fun !square_equiv_eq) s ▸ H4
qed
definition rec_on_tb [recursor] {a : A}
{P : Π{b : A} {l : a = b} {r : a = b}, square idp idp l r → Type}
{b : A} {l : a = b} {r : a = b}
(s : square idp idp l r) (H : P ids) : P s :=
have H2 : P (square_of_eq (eq_of_square s)),
from eq.rec_on (eq_of_square s : idp ⬝ r = l) (by induction r; exact H),
left_inv (to_fun !square_equiv_eq) s ▸ H2
definition rec_on_lr [recursor] {a : A}
{P : Π{a' : A} {t : a = a'} {b : a = a'}, square t b idp idp → Type}
{a' : A} {t : a = a'} {b : a = a'}
(s : square t b idp idp) (H : P ids) : P s :=
let p : idp ⬝ b = t := (eq_of_square s)⁻¹ in
assert H2 : P (square_of_eq (eq_of_square s)⁻¹⁻¹),
from @eq.rec_on _ _ (λx q, P (square_of_eq q⁻¹)) _ p (by induction b; exact H),
to_left_inv (!square_equiv_eq) s ▸ !inv_inv ▸ H2
--we can also do the other recursors (tl, tr, bl, br, tbl, tbr, tlr, blr), but let's postpone this until they are needed
definition whisker_square [unfold 14 15 16 17] (r₁₀ : p₁₀ = p₁₀') (r₁₂ : p₁₂ = p₁₂')
(r₀₁ : p₀₁ = p₀₁') (r₂₁ : p₂₁ = p₂₁') (s : square p₁₀ p₁₂ p₀₁ p₂₁)
: square p₁₀' p₁₂' p₀₁' p₂₁' :=
by induction r₁₀; induction r₁₂; induction r₀₁; induction r₂₁; exact s
/- squares commute with some operations on 2-paths -/
definition square_inv2 {p₁ p₂ p₃ p₄ : a = a'}
{t : p₁ = p₂} {b : p₃ = p₄} {l : p₁ = p₃} {r : p₂ = p₄} (s : square t b l r)
: square (inverse2 t) (inverse2 b) (inverse2 l) (inverse2 r) :=
by induction s;constructor
definition square_con2 {p₁ p₂ p₃ p₄ : a₁ = a₂} {q₁ q₂ q₃ q₄ : a₂ = a₃}
{t₁ : p₁ = p₂} {b₁ : p₃ = p₄} {l₁ : p₁ = p₃} {r₁ : p₂ = p₄}
{t₂ : q₁ = q₂} {b₂ : q₃ = q₄} {l₂ : q₁ = q₃} {r₂ : q₂ = q₄}
(s₁ : square t₁ b₁ l₁ r₁) (s₂ : square t₂ b₂ l₂ r₂)
: square (t₁ ◾ t₂) (b₁ ◾ b₂) (l₁ ◾ l₂) (r₁ ◾ r₂) :=
by induction s₂;induction s₁;constructor
open is_trunc
definition is_hset.elims [H : is_hset A] : square p₁₀ p₁₂ p₀₁ p₂₁ :=
square_of_eq !is_hset.elim
-- definition square_of_con_inv_hsquare {p₁ p₂ p₃ p₄ : a₁ = a₂}
-- {t : p₁ = p₂} {b : p₃ = p₄} {l : p₁ = p₃} {r : p₂ = p₄}
-- (s : square (con_inv_eq_idp t) (con_inv_eq_idp b) (l ◾ r⁻²) idp)
-- : square t b l r :=
-- sorry --by induction s
/- Square fillers -/
-- TODO replace by "more algebraic" fillers?
variables (p₁₀ p₁₂ p₀₁ p₂₁)
definition square_fill_t : Σ (p : a₀₀ = a₂₀), square p p₁₂ p₀₁ p₂₁ :=
by induction p₀₁; induction p₂₁; exact ⟨_, !vrefl⟩
definition square_fill_b : Σ (p : a₀₂ = a₂₂), square p₁₀ p p₀₁ p₂₁ :=
by induction p₀₁; induction p₂₁; exact ⟨_, !vrefl⟩
definition square_fill_l : Σ (p : a₀₀ = a₀₂), square p₁₀ p₁₂ p p₂₁ :=
by induction p₁₀; induction p₁₂; exact ⟨_, !hrefl⟩
definition square_fill_r : Σ (p : a₂₀ = a₂₂) , square p₁₀ p₁₂ p₀₁ p :=
by induction p₁₀; induction p₁₂; exact ⟨_, !hrefl⟩
end eq