671 lines
26 KiB
Text
671 lines
26 KiB
Text
/-
|
||
Copyright (c) 2015 Jeremy Avigad. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Jeremy Avigad, Robert Lewis
|
||
|
||
Metric spaces.
|
||
-/
|
||
import data.real.complete data.pnat ..topology.continuous ..topology.limit data.set
|
||
open nat real eq.ops classical set prod set.filter topology interval
|
||
|
||
structure metric_space [class] (M : Type) : Type :=
|
||
(dist : M → M → ℝ)
|
||
(dist_self : ∀ x : M, dist x x = 0)
|
||
(eq_of_dist_eq_zero : ∀ {x y : M}, dist x y = 0 → x = y)
|
||
(dist_comm : ∀ x y : M, dist x y = dist y x)
|
||
(dist_triangle : ∀ x y z : M, dist x z ≤ dist x y + dist y z)
|
||
|
||
namespace analysis
|
||
|
||
section metric_space_M
|
||
variables {M : Type} [metric_space M]
|
||
|
||
definition dist (x y : M) : ℝ := metric_space.dist x y
|
||
|
||
proposition dist_self (x : M) : dist x x = 0 := metric_space.dist_self x
|
||
|
||
proposition eq_of_dist_eq_zero {x y : M} (H : dist x y = 0) : x = y :=
|
||
metric_space.eq_of_dist_eq_zero H
|
||
|
||
proposition dist_comm (x y : M) : dist x y = dist y x := metric_space.dist_comm x y
|
||
|
||
proposition dist_eq_zero_iff (x y : M) : dist x y = 0 ↔ x = y :=
|
||
iff.intro eq_of_dist_eq_zero (suppose x = y, this ▸ !dist_self)
|
||
|
||
proposition dist_triangle (x y z : M) : dist x z ≤ dist x y + dist y z :=
|
||
metric_space.dist_triangle x y z
|
||
|
||
proposition dist_nonneg (x y : M) : 0 ≤ dist x y :=
|
||
have dist x y + dist y x ≥ 0, by rewrite -(dist_self x); apply dist_triangle,
|
||
have 2 * dist x y ≥ 0,
|
||
by krewrite [-real.one_add_one, right_distrib, +one_mul, dist_comm at {2}]; apply this,
|
||
nonneg_of_mul_nonneg_left this two_pos
|
||
|
||
proposition dist_pos_of_ne {x y : M} (H : x ≠ y) : dist x y > 0 :=
|
||
lt_of_le_of_ne !dist_nonneg (suppose 0 = dist x y, H (iff.mp !dist_eq_zero_iff this⁻¹))
|
||
|
||
proposition ne_of_dist_pos {x y : M} (H : dist x y > 0) : x ≠ y :=
|
||
suppose x = y,
|
||
have H1 : dist x x > 0, by rewrite this at {2}; exact H,
|
||
by rewrite dist_self at H1; apply not_lt_self _ H1
|
||
|
||
proposition eq_of_forall_dist_le {x y : M} (H : ∀ ε, ε > 0 → dist x y ≤ ε) : x = y :=
|
||
eq_of_dist_eq_zero (eq_zero_of_nonneg_of_forall_le !dist_nonneg H)
|
||
|
||
|
||
/- instantiate metric space as a topology -/
|
||
|
||
definition open_ball (x : M) (ε : ℝ) := {y | dist y x < ε}
|
||
|
||
theorem open_ball_eq_empty_of_nonpos (x : M) {ε : ℝ} (Hε : ε ≤ 0) : open_ball x ε = ∅ :=
|
||
begin
|
||
apply eq_empty_of_forall_not_mem,
|
||
intro y Hlt,
|
||
apply not_lt_of_ge (dist_nonneg y x),
|
||
apply lt_of_lt_of_le Hlt Hε
|
||
end
|
||
|
||
theorem pos_of_mem_open_ball {x : M} {ε : ℝ} {u : M} (Hu : u ∈ open_ball x ε) : ε > 0 :=
|
||
begin
|
||
apply lt_of_not_ge,
|
||
intro Hge,
|
||
note Hop := open_ball_eq_empty_of_nonpos x Hge,
|
||
rewrite Hop at Hu,
|
||
apply not_mem_empty _ Hu
|
||
end
|
||
|
||
theorem mem_open_ball (x : M) {ε : ℝ} (H : ε > 0) : x ∈ open_ball x ε :=
|
||
show dist x x < ε, by rewrite dist_self; assumption
|
||
|
||
definition closed_ball (x : M) (ε : ℝ) := {y | dist y x ≤ ε}
|
||
|
||
theorem closed_ball_eq_compl (x : M) (ε : ℝ) : closed_ball x ε = - {y | dist y x > ε} :=
|
||
ext (take y, iff.intro
|
||
(suppose dist y x ≤ ε, not_lt_of_ge this)
|
||
(suppose ¬ dist y x > ε, le_of_not_gt this))
|
||
|
||
variable (M)
|
||
|
||
definition open_sets_basis : set (set M) := { s | ∃ x, ∃ ε, s = open_ball x ε }
|
||
|
||
definition metric_topology [instance] : topology M := topology.generated_by (open_sets_basis M)
|
||
|
||
variable {M}
|
||
|
||
theorem open_ball_mem_open_sets_basis (x : M) (ε : ℝ) : open_ball x ε ∈ open_sets_basis M :=
|
||
exists.intro x (exists.intro ε rfl)
|
||
|
||
theorem Open_open_ball (x : M) (ε : ℝ) : Open (open_ball x ε) :=
|
||
by apply generators_mem_topology_generated_by; apply open_ball_mem_open_sets_basis
|
||
|
||
theorem closed_closed_ball (x : M) {ε : ℝ} (H : ε > 0) : closed (closed_ball x ε) :=
|
||
Open_of_forall_exists_Open_nbhd
|
||
(take y, suppose ¬ dist y x ≤ ε,
|
||
have dist y x > ε, from lt_of_not_ge this,
|
||
let B := open_ball y (dist y x - ε) in
|
||
have y ∈ B, from mem_open_ball y (sub_pos_of_lt this),
|
||
have B ⊆ - closed_ball x ε, from
|
||
take y',
|
||
assume Hy'y : dist y' y < dist y x - ε,
|
||
assume Hy'x : dist y' x ≤ ε,
|
||
show false, from not_lt_self (dist y x)
|
||
(calc
|
||
dist y x ≤ dist y y' + dist y' x : dist_triangle
|
||
... < dist y x - ε + dist y' x : by rewrite dist_comm; apply add_lt_add_right Hy'y
|
||
... ≤ dist y x - ε + ε : add_le_add_left Hy'x
|
||
... = dist y x : by rewrite [sub_add_cancel]),
|
||
exists.intro B (and.intro (Open_open_ball _ _) (and.intro `y ∈ B` this)))
|
||
|
||
proposition open_ball_subset_open_ball_of_le (x : M) {r₁ r₂ : ℝ} (H : r₁ ≤ r₂) :
|
||
open_ball x r₁ ⊆ open_ball x r₂ :=
|
||
take y, assume ymem, lt_of_lt_of_le ymem H
|
||
|
||
theorem exists_open_ball_subset_of_Open_of_mem {U : set M} (HU : Open U) {x : M} (Hx : x ∈ U) :
|
||
∃ (r : ℝ), r > 0 ∧ open_ball x r ⊆ U :=
|
||
begin
|
||
induction HU with s sbasis s t sbasis tbasis ihs iht S Sbasis ihS,
|
||
{cases sbasis with x' aux, cases aux with ε seq,
|
||
have x ∈ open_ball x' ε, by rewrite -seq; exact Hx,
|
||
have εpos : ε > 0, from pos_of_mem_open_ball this,
|
||
have ε - dist x x' > 0, from sub_pos_of_lt `x ∈ open_ball x' ε`,
|
||
existsi (ε - dist x x'), split, exact this, rewrite seq,
|
||
show open_ball x (ε - dist x x') ⊆ open_ball x' ε, from
|
||
take y, suppose dist y x < ε - dist x x',
|
||
calc
|
||
dist y x' ≤ dist y x + dist x x' : dist_triangle
|
||
... < ε - dist x x' + dist x x' : add_lt_add_right this
|
||
... = ε : sub_add_cancel},
|
||
{existsi 1, split, exact zero_lt_one, exact subset_univ _},
|
||
{cases ihs (and.left Hx) with rs aux, cases aux with rspos ballrs_sub,
|
||
cases iht (and.right Hx) with rt aux, cases aux with rtpos ballrt_sub,
|
||
let rmin := min rs rt,
|
||
existsi rmin, split, exact lt_min rspos rtpos,
|
||
have open_ball x rmin ⊆ s,
|
||
from subset.trans (open_ball_subset_open_ball_of_le x !min_le_left) ballrs_sub,
|
||
have open_ball x rmin ⊆ t,
|
||
from subset.trans (open_ball_subset_open_ball_of_le x !min_le_right) ballrt_sub,
|
||
show open_ball x (min rs rt) ⊆ s ∩ t,
|
||
by apply subset_inter; repeat assumption},
|
||
cases Hx with s aux, cases aux with sS xs,
|
||
cases (ihS sS xs) with r aux, cases aux with rpos ballr_sub,
|
||
existsi r, split, exact rpos,
|
||
show open_ball x r ⊆ ⋃₀ S, from subset.trans ballr_sub (subset_sUnion_of_mem sS)
|
||
end
|
||
|
||
/- limits in metric spaces -/
|
||
|
||
proposition eventually_nhds_intro {P : M → Prop} {ε : ℝ} (εpos : ε > 0) {x : M}
|
||
(H : ∀ x', dist x' x < ε → P x') :
|
||
eventually P (nhds x) :=
|
||
topology.eventually_nhds_intro (Open_open_ball x ε) (mem_open_ball x εpos) H
|
||
|
||
proposition eventually_nhds_dest {P : M → Prop} {x : M} (H : eventually P (nhds x)) :
|
||
∃ ε, ε > 0 ∧ ∀ x', dist x' x < ε → P x' :=
|
||
obtain s [(Os : Open s) [(xs : x ∈ s) (Hs : ∀₀ x' ∈ s, P x')]],
|
||
from topology.eventually_nhds_dest H,
|
||
obtain ε [(εpos : ε > 0) (Hε : open_ball x ε ⊆ s)],
|
||
from exists_open_ball_subset_of_Open_of_mem Os xs,
|
||
exists.intro ε (and.intro εpos
|
||
(take x', suppose dist x' x < ε,
|
||
have x' ∈ s, from Hε this,
|
||
show P x', from Hs this))
|
||
|
||
proposition eventually_nhds_iff (P : M → Prop) (x : M) :
|
||
eventually P (nhds x) ↔ (∃ ε, ε > 0 ∧ ∀ x', dist x' x < ε → P x') :=
|
||
iff.intro eventually_nhds_dest
|
||
(assume H, obtain ε [εpos Hε], from H, eventually_nhds_intro εpos Hε)
|
||
|
||
proposition eventually_dist_lt_nhds (x : M) {ε : ℝ} (εpos : ε > 0) :
|
||
eventually (λ x', dist x' x < ε) (nhds x) :=
|
||
eventually_nhds_intro εpos (λ x' H, H)
|
||
|
||
proposition eventually_at_within_intro {P : M → Prop} {ε : ℝ} (εpos : ε > 0) {x : M} {s : set M}
|
||
(H : ∀₀ x' ∈ s, dist x' x < ε → x' ≠ x → P x') :
|
||
eventually P [at x within s] :=
|
||
topology.eventually_at_within_intro (Open_open_ball x ε) (mem_open_ball x εpos)
|
||
(λ x' x'mem x'ne x's, H x's x'mem x'ne)
|
||
|
||
proposition eventually_at_within_dest {P : M → Prop} {x : M} {s : set M}
|
||
(H : eventually P [at x within s]) :
|
||
∃ ε, ε > 0 ∧ ∀₀ x' ∈ s, dist x' x < ε → x' ≠ x → P x' :=
|
||
obtain t [(Ot : Open t) [(xt : x ∈ t) (Ht : ∀₀ x' ∈ t, x' ≠ x → x' ∈ s → P x')]],
|
||
from topology.eventually_at_within_dest H,
|
||
obtain ε [(εpos : ε > 0) (Hε : open_ball x ε ⊆ t)],
|
||
from exists_open_ball_subset_of_Open_of_mem Ot xt,
|
||
exists.intro ε (and.intro εpos
|
||
(take x', assume x's distx'x x'nex,
|
||
have x' ∈ t, from Hε distx'x,
|
||
show P x', from Ht this x'nex x's))
|
||
|
||
proposition eventually_at_within_iff (P : M → Prop) (x : M) (s : set M) :
|
||
eventually P [at x within s] ↔ ∃ ε, ε > 0 ∧ ∀₀ x' ∈ s, dist x' x < ε → x' ≠ x → P x' :=
|
||
iff.intro eventually_at_within_dest
|
||
(λ H, obtain ε [εpos Hε], from H, eventually_at_within_intro εpos Hε)
|
||
|
||
proposition eventually_at_intro {P : M → Prop} {ε : ℝ} (εpos : ε > 0) {x : M}
|
||
(H : ∀ x', dist x' x < ε → x' ≠ x → P x') :
|
||
eventually P [at x] :=
|
||
topology.eventually_at_intro (Open_open_ball x ε) (mem_open_ball x εpos)
|
||
(λ x' x'mem x'ne, H x' x'mem x'ne)
|
||
|
||
proposition eventually_at_dest {P : M → Prop} {x : M} (H : eventually P [at x]) :
|
||
∃ ε, ε > 0 ∧ ∀ ⦃x'⦄, dist x' x < ε → x' ≠ x → P x' :=
|
||
obtain ε [εpos Hε], from eventually_at_within_dest H,
|
||
exists.intro ε (and.intro εpos (λ x', Hε x' (mem_univ x')))
|
||
|
||
proposition eventually_at_iff (P : M → Prop) (x : M) :
|
||
eventually P [at x] ↔ ∃ ε, ε > 0 ∧ ∀ ⦃x'⦄, dist x' x < ε → x' ≠ x → P x' :=
|
||
iff.intro eventually_at_dest (λ H, obtain ε [εpos Hε], from H, eventually_at_intro εpos Hε)
|
||
|
||
section approaches
|
||
variables {X : Type} {F : filter X} {f : X → M} {y : M}
|
||
|
||
proposition approaches_intro (H : ∀ ε, ε > 0 → eventually (λ x, dist (f x) y < ε) F) :
|
||
(f ⟶ y) F :=
|
||
tendsto_intro
|
||
(take P, assume eventuallyP,
|
||
obtain ε [(εpos : ε > 0) (Hε : ∀ x', dist x' y < ε → P x')],
|
||
from eventually_nhds_dest eventuallyP,
|
||
show eventually (λ x, P (f x)) F,
|
||
from eventually_mono (H ε εpos) (λ x Hx, Hε (f x) Hx))
|
||
|
||
proposition approaches_dest (H : (f ⟶ y) F) {ε : ℝ} (εpos : ε > 0) :
|
||
eventually (λ x, dist (f x) y < ε) F :=
|
||
tendsto_dest H (eventually_dist_lt_nhds y εpos)
|
||
|
||
variables (F f y)
|
||
|
||
proposition approaches_iff : (f ⟶ y) F ↔ (∀ ε, ε > 0 → eventually (λ x, dist (f x) y < ε) F) :=
|
||
iff.intro approaches_dest approaches_intro
|
||
|
||
-- TODO: prove this in greater generality in topology.limit
|
||
proposition approaches_constant : ((λ x, y) ⟶ y) F :=
|
||
approaches_intro (λ ε εpos, eventually_of_forall F (λ x,
|
||
show dist y y < ε, by rewrite dist_self; apply εpos))
|
||
end approaches
|
||
|
||
-- here we full unwrap two particular kinds of convergence3
|
||
|
||
proposition approaches_at_infty_intro {f : ℕ → M} {y : M}
|
||
(H : ∀ ε, ε > 0 → ∃ N, ∀ n, n ≥ N → dist (f n) y < ε) :
|
||
f ⟶ y [at ∞] :=
|
||
approaches_intro (λ ε εpos, obtain N HN, from H ε εpos,
|
||
eventually_at_infty_intro HN)
|
||
|
||
proposition approaches_at_infty_dest {f : ℕ → M} {y : M}
|
||
(H : f ⟶ y [at ∞]) ⦃ε : ℝ⦄ (εpos : ε > 0) :
|
||
∃ N, ∀ ⦃n⦄, n ≥ N → dist (f n) y < ε :=
|
||
have eventually (λ x, dist (f x) y < ε) [at ∞], from approaches_dest H εpos,
|
||
eventually_at_infty_dest this
|
||
|
||
proposition approaches_at_infty_iff (f : ℕ → M) (y : M) :
|
||
f ⟶ y [at ∞] ↔ (∀ ε, ε > 0 → ∃ N, ∀ ⦃n⦄, n ≥ N → dist (f n) y < ε) :=
|
||
iff.intro approaches_at_infty_dest approaches_at_infty_intro
|
||
|
||
section metric_space_N
|
||
variables {N : Type} [metric_space N]
|
||
|
||
proposition approaches_at_dest {f : M → N} {y : N} {x : M}
|
||
(H : f ⟶ y [at x]) ⦃ε : ℝ⦄ (εpos : ε > 0) :
|
||
∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, dist x' x < δ → x' ≠ x → dist (f x') y < ε :=
|
||
have eventually (λ x, dist (f x) y < ε) [at x],
|
||
from approaches_dest H εpos,
|
||
eventually_at_dest this
|
||
|
||
proposition approaches_at_intro {f : M → N} {y : N} {x : M}
|
||
(H : ∀ ε, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, dist x' x < δ → x' ≠ x → dist (f x') y < ε) :
|
||
f ⟶ y [at x] :=
|
||
approaches_intro (λ ε εpos,
|
||
obtain δ [δpos Hδ], from H ε εpos,
|
||
eventually_at_intro δpos Hδ)
|
||
|
||
proposition approaches_at_iff (f : M → N) (y : N) (x : M) : f ⟶ y [at x] ↔
|
||
(∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, dist x' x < δ → x' ≠ x → dist (f x') y < ε) :=
|
||
iff.intro approaches_at_dest approaches_at_intro
|
||
|
||
end metric_space_N
|
||
|
||
-- TODO: remove this. It is only here temporarily, because it is used in normed_space
|
||
abbreviation converges_seq [class] (X : ℕ → M) : Prop := ∃ y, X ⟶ y [at ∞]
|
||
|
||
-- TODO: refactor
|
||
-- the same, with ≤ in place of <; easier to prove, harder to use
|
||
definition approaches_at_infty_intro' {X : ℕ → M} {y : M}
|
||
(H : ∀ ⦃ε : ℝ⦄, ε > 0 → ∃ N : ℕ, ∀ {n}, n ≥ N → dist (X n) y ≤ ε) :
|
||
(X ⟶ y) [at ∞] :=
|
||
approaches_at_infty_intro
|
||
take ε, assume epos : ε > 0,
|
||
have e2pos : ε / 2 > 0, from div_pos_of_pos_of_pos `ε > 0` two_pos,
|
||
obtain N HN, from H e2pos,
|
||
exists.intro N
|
||
(take n, suppose n ≥ N,
|
||
calc
|
||
dist (X n) y ≤ ε / 2 : HN _ `n ≥ N`
|
||
... < ε : div_two_lt_of_pos epos)
|
||
|
||
-- TODO: prove more generally
|
||
proposition approaches_at_infty_unique {X : ℕ → M} {y₁ y₂ : M}
|
||
(H₁ : X ⟶ y₁ [at ∞]) (H₂ : X ⟶ y₂ [at ∞]) : y₁ = y₂ :=
|
||
eq_of_forall_dist_le
|
||
(take ε, suppose ε > 0,
|
||
have e2pos : ε / 2 > 0, from div_pos_of_pos_of_pos `ε > 0` two_pos,
|
||
obtain N₁ (HN₁ : ∀ {n}, n ≥ N₁ → dist (X n) y₁ < ε / 2),
|
||
from approaches_at_infty_dest H₁ e2pos,
|
||
obtain N₂ (HN₂ : ∀ {n}, n ≥ N₂ → dist (X n) y₂ < ε / 2),
|
||
from approaches_at_infty_dest H₂ e2pos,
|
||
let N := max N₁ N₂ in
|
||
have dN₁ : dist (X N) y₁ < ε / 2, from HN₁ !le_max_left,
|
||
have dN₂ : dist (X N) y₂ < ε / 2, from HN₂ !le_max_right,
|
||
have dist y₁ y₂ < ε, from calc
|
||
dist y₁ y₂ ≤ dist y₁ (X N) + dist (X N) y₂ : dist_triangle
|
||
... = dist (X N) y₁ + dist (X N) y₂ : dist_comm
|
||
... < ε / 2 + ε / 2 : add_lt_add dN₁ dN₂
|
||
... = ε : add_halves,
|
||
show dist y₁ y₂ ≤ ε, from le_of_lt this)
|
||
|
||
/- TODO: revise
|
||
|
||
definition converges_seq [class] (X : ℕ → M) : Prop := ∃ y, X ⟶ y in ℕ
|
||
|
||
noncomputable definition limit_seq (X : ℕ → M) [H : converges_seq X] : M := some H
|
||
|
||
proposition converges_to_limit_seq (X : ℕ → M) [H : converges_seq X] :
|
||
(X ⟶ limit_seq X in ℕ) :=
|
||
some_spec H
|
||
|
||
proposition eq_limit_of_converges_to_seq {X : ℕ → M} {y : M} (H : X ⟶ y in ℕ) :
|
||
y = @limit_seq M _ X (exists.intro y H) :=
|
||
converges_to_seq_unique H (@converges_to_limit_seq M _ X (exists.intro y H))
|
||
|
||
proposition converges_to_seq_offset_left {X : ℕ → M} {y : M} (k : ℕ) (H : X ⟶ y in ℕ) :
|
||
(λ n, X (k + n)) ⟶ y in ℕ :=
|
||
have aux : (λ n, X (k + n)) = (λ n, X (n + k)), from funext (take n, by rewrite add.comm),
|
||
by rewrite aux; exact converges_to_seq_offset k H
|
||
|
||
proposition converges_to_seq_of_converges_to_seq_offset_left
|
||
{X : ℕ → M} {y : M} {k : ℕ} (H : (λ n, X (k + n)) ⟶ y in ℕ) :
|
||
X ⟶ y in ℕ :=
|
||
have aux : (λ n, X (k + n)) = (λ n, X (n + k)), from funext (take n, by rewrite add.comm),
|
||
by rewrite aux at H; exact converges_to_seq_of_converges_to_seq_offset H
|
||
-/
|
||
|
||
proposition bounded_of_converges_seq {X : ℕ → M} {x : M} (H : X ⟶ x [at ∞]) :
|
||
∃ K : ℝ, ∀ n : ℕ, dist (X n) x ≤ K :=
|
||
have eventually (λ n, dist (X n) x < 1) [at ∞],
|
||
from approaches_dest H zero_lt_one,
|
||
obtain N (HN : ∀ n, n ≥ N → dist (X n) x < 1),
|
||
from eventually_at_infty_dest this,
|
||
let K := max 1 (Max i ∈ '(-∞, N), dist (X i) x) in
|
||
exists.intro K
|
||
(take n,
|
||
if Hn : n < N then
|
||
show dist (X n) x ≤ K,
|
||
from le.trans (le_Max _ Hn) !le_max_right
|
||
else
|
||
show dist (X n) x ≤ K,
|
||
from le.trans (le_of_lt (HN n (le_of_not_gt Hn))) !le_max_left)
|
||
|
||
/- cauchy sequences -/
|
||
|
||
definition cauchy (X : ℕ → M) : Prop :=
|
||
∀ ε : ℝ, ε > 0 → ∃ N, ∀ m n, m ≥ N → n ≥ N → dist (X m) (X n) < ε
|
||
|
||
proposition cauchy_of_converges_seq {X : ℕ → M} (H : ∃ y, X ⟶ y [at ∞]) : cauchy X :=
|
||
take ε, suppose ε > 0,
|
||
obtain y (Hy : X ⟶ y [at ∞]), from H,
|
||
have e2pos : ε / 2 > 0, from div_pos_of_pos_of_pos `ε > 0` two_pos,
|
||
have eventually (λ n, dist (X n) y < ε / 2) [at ∞], from approaches_dest Hy e2pos,
|
||
obtain N (HN : ∀ {n}, n ≥ N → dist (X n) y < ε / 2), from eventually_at_infty_dest this,
|
||
exists.intro N
|
||
(take m n, suppose m ≥ N, suppose n ≥ N,
|
||
have dN₁ : dist (X m) y < ε / 2, from HN `m ≥ N`,
|
||
have dN₂ : dist (X n) y < ε / 2, from HN `n ≥ N`,
|
||
show dist (X m) (X n) < ε, from calc
|
||
dist (X m) (X n) ≤ dist (X m) y + dist y (X n) : dist_triangle
|
||
... = dist (X m) y + dist (X n) y : dist_comm
|
||
... < ε / 2 + ε / 2 : add_lt_add dN₁ dN₂
|
||
... = ε : add_halves)
|
||
|
||
end metric_space_M
|
||
|
||
/- convergence of a function at a point -/
|
||
|
||
section metric_space_M_N
|
||
variables {M N : Type} [metric_space M] [metric_space N]
|
||
|
||
/-
|
||
definition converges_to_at (f : M → N) (y : N) (x : M) :=
|
||
∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, x' ≠ x ∧ dist x' x < δ → dist (f x') y < ε
|
||
|
||
notation f `⟶` y `at` x := converges_to_at f y x
|
||
|
||
definition converges_at [class] (f : M → N) (x : M) :=
|
||
∃ y, converges_to_at f y x
|
||
|
||
noncomputable definition limit_at (f : M → N) (x : M) [H : converges_at f x] : N :=
|
||
some H
|
||
|
||
proposition converges_to_limit_at (f : M → N) (x : M) [H : converges_at f x] :
|
||
(f ⟶ limit_at f x at x) :=
|
||
some_spec H
|
||
|
||
-/
|
||
|
||
-- TODO: refactor
|
||
section
|
||
open pnat rat
|
||
private lemma of_rat_rat_of_pnat_eq_of_nat_nat_of_pnat (p : pnat) :
|
||
of_rat (rat_of_pnat p) = of_nat (nat_of_pnat p) :=
|
||
rfl
|
||
|
||
theorem cnv_real_of_cnv_nat {X : ℕ → M} {c : M} (H : ∀ n : ℕ, dist (X n) c < 1 / (real.of_nat n + 1)) :
|
||
∀ ε : ℝ, ε > 0 → ∃ N : ℕ, ∀ n : ℕ, n ≥ N → dist (X n) c < ε :=
|
||
begin
|
||
intros ε Hε,
|
||
cases ex_rat_pos_lower_bound_of_pos Hε with q Hq,
|
||
cases Hq with Hq1 Hq2,
|
||
cases pnat_bound Hq1 with p Hp,
|
||
existsi pnat.nat_of_pnat p,
|
||
intros n Hn,
|
||
apply lt_of_lt_of_le,
|
||
apply H,
|
||
apply le.trans,
|
||
rotate 1,
|
||
apply Hq2,
|
||
have Hrat : of_rat (inv p) ≤ of_rat q, from of_rat_le_of_rat_of_le Hp,
|
||
apply le.trans,
|
||
rotate 1,
|
||
exact Hrat,
|
||
change 1 / (of_nat n + 1) ≤ of_rat ((1 : ℚ) / (rat_of_pnat p)),
|
||
rewrite [of_rat_divide, of_rat_one],
|
||
eapply one_div_le_one_div_of_le,
|
||
krewrite -of_rat_zero,
|
||
apply of_rat_lt_of_rat_of_lt,
|
||
apply rat_of_pnat_is_pos,
|
||
krewrite [of_rat_rat_of_pnat_eq_of_nat_nat_of_pnat, -real.of_nat_add],
|
||
apply real.of_nat_le_of_nat_of_le,
|
||
apply le_add_of_le_right,
|
||
assumption
|
||
end
|
||
end
|
||
|
||
-- a nice illustration of the limit library: [at c] and [at ∞] can be replaced by any filters
|
||
theorem comp_approaches_at_infty {f : M → N} {c : M} {l : N} (Hf : f ⟶ l [at c])
|
||
{X : ℕ → M} (HX₁ : X ⟶ c [at ∞]) (HX₂ : eventually (λ n, X n ≠ c) [at ∞]) :
|
||
(λ n, f (X n)) ⟶ l [at ∞] :=
|
||
tendsto_comp_of_approaches_of_tendsto_at HX₁ HX₂ Hf
|
||
|
||
-- TODO: refactor
|
||
|
||
theorem converges_to_at_of_all_conv_seqs {f : M → N} (c : M) (l : N)
|
||
(Hseq : ∀ X : ℕ → M, ((∀ n : ℕ, ((X n) ≠ c) ∧ (X ⟶ c [at ∞])) → ((λ n : ℕ, f (X n)) ⟶ l [at ∞])))
|
||
: f ⟶ l [at c] :=
|
||
by_contradiction
|
||
(assume Hnot : ¬ (f ⟶ l [at c]),
|
||
obtain ε Hε, from exists_not_of_not_forall (λ H, Hnot (approaches_at_intro H)),
|
||
let Hε' := and_not_of_not_implies Hε in
|
||
obtain (H1 : ε > 0) H2, from Hε',
|
||
have H3 : ∀ δ : ℝ, (δ > 0 → ∃ x' : M, x' ≠ c ∧ dist x' c < δ ∧ dist (f x') l ≥ ε), begin -- tedious!!
|
||
intros δ Hδ,
|
||
note Hε'' := forall_not_of_not_exists H2,
|
||
note H4 := forall_not_of_not_exists H2 δ,
|
||
have ¬ (∀ x' : M, dist x' c < δ → x' ≠ c → dist (f x') l < ε),
|
||
from λ H', H4 (and.intro Hδ H'),
|
||
note H5 := exists_not_of_not_forall this,
|
||
cases H5 with x' Hx',
|
||
existsi x',
|
||
note H6 := and_not_of_not_implies Hx',
|
||
-- rewrite and.assoc at H6,
|
||
cases H6 with H6a H6b,
|
||
split,
|
||
cases (and_not_of_not_implies H6b),
|
||
assumption,
|
||
split,
|
||
assumption,
|
||
apply le_of_not_gt,
|
||
cases (and_not_of_not_implies H6b),
|
||
assumption
|
||
end,
|
||
let S : ℕ → M → Prop := λ n x, 0 < dist x c ∧ dist x c < 1 / (of_nat n + 1) ∧ dist (f x) l ≥ ε in
|
||
have HS : ∀ n : ℕ, ∃ m : M, S n m, begin
|
||
intro k,
|
||
have Hpos : 0 < of_nat k + 1, from of_nat_succ_pos k,
|
||
cases H3 (1 / (k + 1)) (one_div_pos_of_pos Hpos) with x' Hx',
|
||
cases Hx' with Hne Hx',
|
||
cases Hx' with Hdistl Hdistg,
|
||
existsi x',
|
||
esimp,
|
||
split,
|
||
apply dist_pos_of_ne,
|
||
assumption,
|
||
split,
|
||
repeat assumption
|
||
end,
|
||
let X : ℕ → M := λ n, some (HS n) in
|
||
have H4 : ∀ n : ℕ, ((X n) ≠ c) ∧ (X ⟶ c [at ∞]), from
|
||
(take n, and.intro
|
||
(begin
|
||
note Hspec := some_spec (HS n),
|
||
esimp, esimp at Hspec,
|
||
cases Hspec,
|
||
apply ne_of_dist_pos,
|
||
assumption
|
||
end)
|
||
(begin
|
||
apply approaches_at_infty_intro,
|
||
apply cnv_real_of_cnv_nat,
|
||
intro m,
|
||
note Hspec := some_spec (HS m),
|
||
esimp, esimp at Hspec,
|
||
cases Hspec with Hspec1 Hspec2,
|
||
cases Hspec2,
|
||
assumption
|
||
end)),
|
||
have H5 : (λ n : ℕ, f (X n)) ⟶ l [at ∞], from Hseq X H4,
|
||
begin
|
||
note H6 := approaches_at_infty_dest H5 H1,
|
||
cases H6 with Q HQ,
|
||
note HQ' := HQ !le.refl,
|
||
esimp at HQ',
|
||
apply absurd HQ',
|
||
apply not_lt_of_ge,
|
||
note H7 := some_spec (HS Q),
|
||
esimp at H7,
|
||
cases H7 with H71 H72,
|
||
cases H72,
|
||
assumption
|
||
end)
|
||
|
||
end metric_space_M_N
|
||
|
||
section continuity
|
||
variables {M N : Type} [Hm : metric_space M] [Hn : metric_space N]
|
||
include Hm Hn
|
||
open topology set
|
||
/- continuity at a point -/
|
||
|
||
-- the ε - δ definition of continuity is equivalent to the topological definition
|
||
theorem continuous_at_intro {f : M → N} {x : M}
|
||
(H : ∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, dist x' x < δ → dist (f x') (f x) < ε) :
|
||
continuous_at f x :=
|
||
begin
|
||
rewrite ↑continuous_at,
|
||
intros U Uopen HfU,
|
||
cases exists_open_ball_subset_of_Open_of_mem Uopen HfU with r Hr,
|
||
cases Hr with Hr HUr,
|
||
cases H Hr with δ Hδ,
|
||
cases Hδ with Hδ Hx'δ,
|
||
existsi open_ball x δ,
|
||
split,
|
||
apply Open_open_ball,
|
||
split,
|
||
apply mem_open_ball,
|
||
exact Hδ,
|
||
intro y Hy,
|
||
apply mem_preimage,
|
||
apply HUr,
|
||
note Hy'' := Hx'δ Hy,
|
||
exact Hy''
|
||
end
|
||
|
||
theorem continuous_at_elim {f : M → N} {x : M} (Hfx : continuous_at f x) :
|
||
∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, dist x' x < δ → dist (f x') (f x) < ε :=
|
||
begin
|
||
intros ε Hε,
|
||
rewrite [↑continuous_at at Hfx],
|
||
cases @Hfx (open_ball (f x) ε) !Open_open_ball (mem_open_ball _ Hε) with V HV,
|
||
cases HV with HV HVx,
|
||
cases HVx with HVx HVf,
|
||
cases exists_open_ball_subset_of_Open_of_mem HV HVx with δ Hδ,
|
||
cases Hδ with Hδ Hδx,
|
||
existsi δ,
|
||
split,
|
||
exact Hδ,
|
||
intro x' Hx',
|
||
apply HVf,
|
||
apply Hδx,
|
||
apply Hx',
|
||
end
|
||
|
||
theorem continuous_at_of_converges_to_at {f : M → N} {x : M} (Hf : f ⟶ f x [at x]) :
|
||
continuous_at f x :=
|
||
continuous_at_intro
|
||
(take ε, suppose ε > 0,
|
||
obtain δ Hδ, from approaches_at_dest Hf this,
|
||
exists.intro δ (and.intro
|
||
(and.left Hδ)
|
||
(take x', suppose dist x' x < δ,
|
||
if Heq : x' = x then
|
||
by rewrite [-Heq, dist_self]; assumption
|
||
else
|
||
(suffices dist x' x < δ, from and.right Hδ x' this Heq,
|
||
this))))
|
||
|
||
theorem converges_to_at_of_continuous_at {f : M → N} {x : M} (Hf : continuous_at f x) :
|
||
f ⟶ f x [at x] :=
|
||
approaches_at_intro
|
||
(take ε, suppose ε > 0,
|
||
obtain δ [δpos Hδ], from continuous_at_elim Hf this,
|
||
exists.intro δ (and.intro δpos (λ x' Hx' xnex', Hδ x' Hx')))
|
||
|
||
definition continuous (f : M → N) : Prop := ∀ x, continuous_at f x
|
||
|
||
theorem converges_seq_comp_of_converges_seq_of_cts (X : ℕ → M) [HX : converges_seq X] {f : M → N}
|
||
(Hf : continuous f) :
|
||
converges_seq (λ n, f (X n)) :=
|
||
begin
|
||
cases HX with xlim Hxlim,
|
||
existsi f xlim,
|
||
apply approaches_at_infty_intro,
|
||
intros ε Hε,
|
||
let Hcont := (continuous_at_elim (Hf xlim)) Hε,
|
||
cases Hcont with δ Hδ,
|
||
cases approaches_at_infty_dest Hxlim (and.left Hδ) with B HB,
|
||
existsi B,
|
||
intro n Hn,
|
||
apply and.right Hδ,
|
||
apply HB Hn
|
||
end
|
||
|
||
omit Hn
|
||
theorem id_continuous : continuous (λ x : M, x) :=
|
||
begin
|
||
intros x,
|
||
apply continuous_at_intro,
|
||
intro ε Hε,
|
||
existsi ε,
|
||
split,
|
||
assumption,
|
||
intros,
|
||
assumption
|
||
end
|
||
|
||
end continuity
|
||
|
||
end analysis
|
||
|
||
|
||
/- complete metric spaces -/
|
||
|
||
structure complete_metric_space [class] (M : Type) extends metricM : metric_space M : Type :=
|
||
(complete : ∀ X, @analysis.cauchy M metricM X → @analysis.converges_seq M metricM X)
|
||
|
||
namespace analysis
|
||
|
||
proposition complete (M : Type) [cmM : complete_metric_space M] {X : ℕ → M} (H : cauchy X) :
|
||
converges_seq X :=
|
||
complete_metric_space.complete X H
|
||
|
||
end analysis
|
||
|
||
|
||
/- the reals form a metric space -/
|
||
|
||
noncomputable definition metric_space_real [instance] : metric_space ℝ :=
|
||
⦃ metric_space,
|
||
dist := λ x y, abs (x - y),
|
||
dist_self := λ x, abstract by rewrite [sub_self, abs_zero] end,
|
||
eq_of_dist_eq_zero := λ x y, eq_of_abs_sub_eq_zero,
|
||
dist_comm := abs_sub,
|
||
dist_triangle := abs_sub_le
|
||
⦄
|