338 lines
12 KiB
Text
338 lines
12 KiB
Text
/-
|
||
Copyright (c) 2016 Floris van Doorn. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
|
||
Authors: Floris van Doorn
|
||
|
||
Eilenberg MacLane spaces
|
||
-/
|
||
|
||
import hit.groupoid_quotient .hopf .freudenthal .homotopy_group
|
||
open algebra pointed nat eq category group algebra is_trunc iso pointed unit trunc equiv is_conn
|
||
function is_equiv
|
||
|
||
namespace EM
|
||
open groupoid_quotient
|
||
|
||
variable {G : Group}
|
||
definition EM1 (G : Group) : Type :=
|
||
groupoid_quotient (Groupoid_of_Group G)
|
||
definition pEM1 [constructor] (G : Group) : Type* :=
|
||
pointed.MK (EM1 G) (elt star)
|
||
|
||
definition base : EM1 G := elt star
|
||
definition pth : G → base = base := pth
|
||
definition resp_mul (g h : G) : pth (g * h) = pth g ⬝ pth h := resp_comp h g
|
||
definition resp_one : pth (1 : G) = idp :=
|
||
resp_id star
|
||
|
||
definition resp_inv (g : G) : pth (g⁻¹) = (pth g)⁻¹ :=
|
||
resp_inv g
|
||
|
||
local attribute pointed.MK pointed.carrier pEM1 EM1 [reducible]
|
||
protected definition rec {P : EM1 G → Type} [H : Π(x : EM1 G), is_trunc 1 (P x)]
|
||
(Pb : P base) (Pp : Π(g : G), Pb =[pth g] Pb)
|
||
(Pmul : Π(g h : G), change_path (resp_mul g h) (Pp (g * h)) = Pp g ⬝o Pp h) (x : EM1 G) : P x :=
|
||
begin
|
||
induction x,
|
||
{ induction g, exact Pb},
|
||
{ induction a, induction b, exact Pp f},
|
||
{ induction a, induction b, induction c, exact Pmul f g}
|
||
end
|
||
|
||
protected definition rec_on {P : EM1 G → Type} [H : Π(x : EM1 G), is_trunc 1 (P x)]
|
||
(x : EM1 G) (Pb : P base) (Pp : Π(g : G), Pb =[pth g] Pb)
|
||
(Pmul : Π(g h : G), change_path (resp_mul g h) (Pp (g * h)) = Pp g ⬝o Pp h) : P x :=
|
||
EM.rec Pb Pp Pmul x
|
||
|
||
protected definition set_rec {P : EM1 G → Type} [H : Π(x : EM1 G), is_set (P x)]
|
||
(Pb : P base) (Pp : Π(g : G), Pb =[pth g] Pb) (x : EM1 G) : P x :=
|
||
EM.rec Pb Pp !center x
|
||
|
||
protected definition prop_rec {P : EM1 G → Type} [H : Π(x : EM1 G), is_prop (P x)]
|
||
(Pb : P base) (x : EM1 G) : P x :=
|
||
EM.rec Pb !center !center x
|
||
|
||
definition rec_pth {P : EM1 G → Type} [H : Π(x : EM1 G), is_trunc 1 (P x)]
|
||
{Pb : P base} {Pp : Π(g : G), Pb =[pth g] Pb}
|
||
(Pmul : Π(g h : G), change_path (resp_mul g h) (Pp (g * h)) = Pp g ⬝o Pp h)
|
||
(g : G) : apd (EM.rec Pb Pp Pmul) (pth g) = Pp g :=
|
||
proof !rec_pth qed
|
||
|
||
protected definition elim {P : Type} [is_trunc 1 P] (Pb : P) (Pp : Π(g : G), Pb = Pb)
|
||
(Pmul : Π(g h : G), Pp (g * h) = Pp g ⬝ Pp h) (x : EM1 G) : P :=
|
||
begin
|
||
induction x,
|
||
{ exact Pb},
|
||
{ exact Pp f},
|
||
{ exact Pmul f g}
|
||
end
|
||
|
||
protected definition elim_on [reducible] {P : Type} [is_trunc 1 P] (x : EM1 G)
|
||
(Pb : P) (Pp : G → Pb = Pb) (Pmul : Π(g h : G), Pp (g * h) = Pp g ⬝ Pp h) : P :=
|
||
EM.elim Pb Pp Pmul x
|
||
|
||
protected definition set_elim [reducible] {P : Type} [is_set P] (Pb : P) (Pp : G → Pb = Pb)
|
||
(x : EM1 G) : P :=
|
||
EM.elim Pb Pp !center x
|
||
|
||
protected definition prop_elim [reducible] {P : Type} [is_prop P] (Pb : P) (x : EM1 G) : P :=
|
||
EM.elim Pb !center !center x
|
||
|
||
definition elim_pth {P : Type} [is_trunc 1 P] {Pb : P} {Pp : G → Pb = Pb}
|
||
(Pmul : Π(g h : G), Pp (g * h) = Pp g ⬝ Pp h) (g : G) : ap (EM.elim Pb Pp Pmul) (pth g) = Pp g :=
|
||
proof !elim_pth qed
|
||
|
||
protected definition elim_set.{u} (Pb : Set.{u}) (Pp : Π(g : G), Pb ≃ Pb)
|
||
(Pmul : Π(g h : G) (x : Pb), Pp (g * h) x = Pp h (Pp g x)) (x : EM1 G) : Set.{u} :=
|
||
groupoid_quotient.elim_set (λu, Pb) (λu v, Pp) (λu v w g h, proof Pmul h g qed) x
|
||
|
||
theorem elim_set_pth {Pb : Set} {Pp : Π(g : G), Pb ≃ Pb}
|
||
(Pmul : Π(g h : G) (x : Pb), Pp (g * h) x = Pp h (Pp g x)) (g : G) :
|
||
transport (EM.elim_set Pb Pp Pmul) (pth g) = Pp g :=
|
||
!elim_set_pth
|
||
|
||
end EM
|
||
|
||
attribute EM.base [constructor]
|
||
attribute EM.rec EM.elim [unfold 7] [recursor 7]
|
||
attribute EM.rec_on EM.elim_on [unfold 4]
|
||
attribute EM.set_rec EM.set_elim [unfold 6]
|
||
attribute EM.prop_rec EM.prop_elim EM.elim_set [unfold 5]
|
||
|
||
namespace EM
|
||
open groupoid_quotient
|
||
|
||
definition base_eq_base_equiv [constructor] (G : Group) : (base = base :> pEM1 G) ≃ G :=
|
||
!elt_eq_elt_equiv
|
||
|
||
definition fundamental_group_pEM1 (G : Group) : π₁ (pEM1 G) ≃g G :=
|
||
begin
|
||
fapply isomorphism_of_equiv,
|
||
{ exact trunc_equiv_trunc 0 !base_eq_base_equiv ⬝e trunc_equiv 0 G},
|
||
{ intros g h, induction g with p, induction h with q,
|
||
exact encode_con p q}
|
||
end
|
||
|
||
proposition is_trunc_pEM1 [instance] (G : Group) : is_trunc 1 (pEM1 G) :=
|
||
!is_trunc_groupoid_quotient
|
||
|
||
proposition is_trunc_EM1 [instance] (G : Group) : is_trunc 1 (EM1 G) :=
|
||
!is_trunc_groupoid_quotient
|
||
|
||
proposition is_conn_EM1 [instance] (G : Group) : is_conn 0 (EM1 G) :=
|
||
by apply @is_conn_groupoid_quotient; esimp; exact _
|
||
|
||
proposition is_conn_pEM1 [instance] (G : Group) : is_conn 0 (pEM1 G) :=
|
||
is_conn_EM1 G
|
||
|
||
definition EM1_map [unfold 7] {G : Group} {X : Type*} (e : Ω X ≃ G)
|
||
(r : Πp q, e (p ⬝ q) = e p * e q) [is_conn 0 X] [is_trunc 1 X] : EM1 G → X :=
|
||
begin
|
||
intro x, induction x using EM.elim,
|
||
{ exact Point X},
|
||
{ note p := e⁻¹ᵉ g, exact p},
|
||
{ exact inv_preserve_binary e concat mul r g h}
|
||
end
|
||
|
||
end EM
|
||
|
||
open hopf susp
|
||
namespace EM
|
||
-- The K(G,n+1):
|
||
variables (G : CommGroup) (n : ℕ)
|
||
|
||
definition EM1_mul [unfold 2 3] {G : CommGroup} (x x' : EM1 G) : EM1 G :=
|
||
begin
|
||
induction x,
|
||
{ exact x'},
|
||
{ induction x' using EM.set_rec,
|
||
{ exact pth g},
|
||
{ exact abstract begin apply loop_pathover, apply square_of_eq,
|
||
refine !resp_mul⁻¹ ⬝ _ ⬝ !resp_mul,
|
||
exact ap pth !mul.comm end end}},
|
||
{ refine EM.prop_rec _ x', apply resp_mul}
|
||
end
|
||
|
||
definition EM1_mul_one (G : CommGroup) (x : EM1 G) : EM1_mul x base = x :=
|
||
begin
|
||
induction x using EM.set_rec,
|
||
{ reflexivity},
|
||
{ apply eq_pathover_id_right, apply hdeg_square, refine EM.elim_pth _ g}
|
||
end
|
||
|
||
definition h_space_EM1 [constructor] [instance] (G : CommGroup) : h_space (pEM1 G) :=
|
||
begin
|
||
fapply h_space.mk,
|
||
{ exact EM1_mul},
|
||
{ exact base},
|
||
{ intro x', reflexivity},
|
||
{ apply EM1_mul_one}
|
||
end
|
||
|
||
/- K(G, n+1) -/
|
||
definition EMadd1 (G : CommGroup) (n : ℕ) : Type* :=
|
||
ptrunc (n+1) (iterate_psusp n (pEM1 G))
|
||
|
||
definition loop_EM2 (G : CommGroup) : Ω[1] (EMadd1 G 1) ≃* pEM1 G :=
|
||
begin
|
||
apply hopf.delooping, reflexivity
|
||
end
|
||
|
||
definition homotopy_group_EM2 (G : CommGroup) : πg[1+1] (EMadd1 G 1) ≃g G :=
|
||
begin
|
||
refine ghomotopy_group_succ_in _ 0 ⬝g _,
|
||
refine homotopy_group_isomorphism_of_pequiv 0 (loop_EM2 G) ⬝g _,
|
||
apply fundamental_group_pEM1
|
||
end
|
||
|
||
definition homotopy_group_EMadd1 (G : CommGroup) (n : ℕ) : πg[n+1] (EMadd1 G n) ≃g G :=
|
||
begin
|
||
cases n with n,
|
||
{ refine homotopy_group_isomorphism_of_pequiv 0 _ ⬝g fundamental_group_pEM1 G,
|
||
apply ptrunc_pequiv, apply is_trunc_pEM1},
|
||
induction n with n IH,
|
||
{ apply homotopy_group_EM2 G},
|
||
refine _ ⬝g IH,
|
||
refine !ghomotopy_group_ptrunc ⬝g _ ⬝g !ghomotopy_group_ptrunc⁻¹ᵍ,
|
||
apply iterate_psusp_stability_isomorphism,
|
||
rexact add_mul_le_mul_add n 1 1
|
||
end
|
||
|
||
section
|
||
local attribute EMadd1 [reducible]
|
||
definition is_conn_EMadd1 [instance] (G : CommGroup) (n : ℕ) : is_conn n (EMadd1 G n) := _
|
||
|
||
definition is_trunc_EMadd1 [instance] (G : CommGroup) (n : ℕ) : is_trunc (n+1) (EMadd1 G n) := _
|
||
end
|
||
|
||
/- K(G, n) -/
|
||
definition EM (G : CommGroup) : ℕ → Type*
|
||
| 0 := pType_of_Group G
|
||
| (k+1) := EMadd1 G k
|
||
|
||
namespace ops
|
||
abbreviation K := EM
|
||
end ops
|
||
open ops
|
||
|
||
definition phomotopy_group_EM (G : CommGroup) (n : ℕ) : π*[n] (EM G n) ≃* pType_of_Group G :=
|
||
begin
|
||
cases n with n,
|
||
{ rexact ptrunc_pequiv 0 (pType_of_Group G) _},
|
||
{ apply pequiv_of_isomorphism (homotopy_group_EMadd1 G n)}
|
||
end
|
||
|
||
definition ghomotopy_group_EM (G : CommGroup) (n : ℕ) : πg[n+1] (EM G (n+1)) ≃g G :=
|
||
homotopy_group_EMadd1 G n
|
||
|
||
definition is_conn_EM [instance] (G : CommGroup) (n : ℕ) : is_conn (n.-1) (EM G n) :=
|
||
begin
|
||
cases n with n,
|
||
{ apply is_conn_minus_one, apply tr, unfold [EM], exact 1},
|
||
{ apply is_conn_EMadd1}
|
||
end
|
||
|
||
definition is_conn_EM_succ [instance] (G : CommGroup) (n : ℕ) : is_conn n (EM G (succ n)) :=
|
||
is_conn_EM G (succ n)
|
||
|
||
definition is_trunc_EM [instance] (G : CommGroup) (n : ℕ) : is_trunc n (EM G n) :=
|
||
begin
|
||
cases n with n,
|
||
{ unfold [EM], apply semigroup.is_set_carrier},
|
||
{ apply is_trunc_EMadd1}
|
||
end
|
||
|
||
/- Uniqueness of K(G, 1) -/
|
||
definition pEM1_pmap [constructor] {G : Group} {X : Type*} (e : Ω X ≃ G)
|
||
(r : Πp q, e (p ⬝ q) = e p * e q) [is_conn 0 X] [is_trunc 1 X] : pEM1 G →* X :=
|
||
begin
|
||
apply pmap.mk (EM1_map e r),
|
||
reflexivity,
|
||
end
|
||
|
||
definition loop_pEM1 [constructor] (G : Group) : Ω (pEM1 G) ≃* pType_of_Group G :=
|
||
pequiv_of_equiv (base_eq_base_equiv G) idp
|
||
|
||
definition loop_pEM1_pmap {G : Group} {X : Type*} (e : Ω X ≃ G)
|
||
(r : Πp q, e (p ⬝ q) = e p * e q) [is_conn 0 X] [is_trunc 1 X] :
|
||
Ω→(pEM1_pmap e r) ~ e⁻¹ᵉ ∘ base_eq_base_equiv G :=
|
||
begin
|
||
apply homotopy_of_inv_homotopy_pre (base_eq_base_equiv G),
|
||
intro g, exact !idp_con ⬝ !elim_pth
|
||
end
|
||
|
||
open trunc_index
|
||
definition pEM1_pequiv'.{u} {G : Group.{u}} {X : pType.{u}} (e : Ω X ≃ G)
|
||
(r : Πp q, e (p ⬝ q) = e p * e q) [is_conn 0 X] [is_trunc 1 X] : pEM1 G ≃* X :=
|
||
begin
|
||
apply pequiv_of_pmap (pEM1_pmap e r),
|
||
apply whitehead_principle_pointed 1,
|
||
intro k, cases k with k,
|
||
{ apply @is_equiv_of_is_contr,
|
||
all_goals (esimp; exact _)},
|
||
{ cases k with k,
|
||
{ apply is_equiv_trunc_functor, esimp,
|
||
apply is_equiv.homotopy_closed, rotate 1,
|
||
{ symmetry, exact loop_pEM1_pmap _ _},
|
||
apply is_equiv_compose, apply to_is_equiv},
|
||
{ apply @is_equiv_of_is_contr,
|
||
do 2 exact trivial_homotopy_group_of_is_trunc _ (succ_lt_succ !zero_lt_succ)}}
|
||
end
|
||
|
||
definition pEM1_pequiv.{u} {G : Group.{u}} {X : pType.{u}} (e : π₁ X ≃g G)
|
||
[is_conn 0 X] [is_trunc 1 X] : pEM1 G ≃* X :=
|
||
begin
|
||
apply pEM1_pequiv' (!trunc_equiv⁻¹ᵉ ⬝e equiv_of_isomorphism e),
|
||
intro p q, esimp, exact to_respect_mul e (tr p) (tr q)
|
||
end
|
||
|
||
definition pEM1_pequiv_type {X : Type*} [is_conn 0 X] [is_trunc 1 X] : pEM1 (π₁ X) ≃* X :=
|
||
pEM1_pequiv !isomorphism.refl
|
||
|
||
definition EM_pequiv_1.{u} {G : CommGroup.{u}} {X : pType.{u}} (e : π₁ X ≃g G)
|
||
[is_conn 0 X] [is_trunc 1 X] : EM G 1 ≃* X :=
|
||
begin
|
||
refine _ ⬝e* pEM1_pequiv e,
|
||
apply ptrunc_pequiv,
|
||
apply is_trunc_pEM1
|
||
end
|
||
|
||
definition EMadd1_pequiv_pEM1 (G : CommGroup) : EMadd1 G 0 ≃* pEM1 G :=
|
||
begin apply ptrunc_pequiv, apply is_trunc_pEM1 end
|
||
|
||
definition EM1add1_pequiv_0.{u} {G : CommGroup.{u}} {X : pType.{u}} (e : π₁ X ≃g G)
|
||
[is_conn 0 X] [is_trunc 1 X] : EMadd1 G 0 ≃* X :=
|
||
EMadd1_pequiv_pEM1 G ⬝e* pEM1_pequiv e
|
||
|
||
definition KG1_pequiv.{u} {X Y : pType.{u}} (e : π₁ X ≃g π₁ Y)
|
||
[is_conn 0 X] [is_trunc 1 X] [is_conn 0 Y] [is_trunc 1 Y] : X ≃* Y :=
|
||
(pEM1_pequiv e)⁻¹ᵉ* ⬝e* pEM1_pequiv !isomorphism.refl
|
||
|
||
open circle int
|
||
definition EM_pequiv_circle : K agℤ 1 ≃* S¹. :=
|
||
!EMadd1_pequiv_pEM1 ⬝e* pEM1_pequiv fundamental_group_of_circle
|
||
|
||
/- loops of EM-spaces -/
|
||
definition loop_EMadd1 {G : CommGroup} (n : ℕ) : Ω (EMadd1 G (succ n)) ≃* EMadd1 G n :=
|
||
begin
|
||
cases n with n,
|
||
{ symmetry, apply EM1add1_pequiv_0, rexact homotopy_group_EMadd1 G 1,
|
||
-- apply is_conn_loop, apply is_conn_EMadd1,
|
||
apply is_trunc_loop, apply is_trunc_EMadd1},
|
||
{ refine loop_ptrunc_pequiv _ _ ⬝e* _,
|
||
rewrite [add_one, succ_sub_two],
|
||
have succ n + 1 ≤ 2 * succ n, from add_mul_le_mul_add n 1 1,
|
||
symmetry, refine freudenthal_pequiv _ this, }
|
||
end
|
||
|
||
definition loop_EM (G : CommGroup) (n : ℕ) : Ω (K G (succ n)) ≃* K G n :=
|
||
begin
|
||
cases n with n,
|
||
{ refine _ ⬝e* pequiv_of_isomorphism (fundamental_group_pEM1 G),
|
||
refine loop_pequiv_loop (EMadd1_pequiv_pEM1 G) ⬝e* _,
|
||
symmetry, apply ptrunc_pequiv, exact _},
|
||
{ apply loop_EMadd1}
|
||
end
|
||
|
||
end EM
|