193 lines
6.3 KiB
Text
193 lines
6.3 KiB
Text
/-
|
||
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Floris van Doorn
|
||
|
||
Declaration of the n-spheres
|
||
-/
|
||
|
||
import .susp types.trunc
|
||
|
||
open eq nat susp bool is_trunc unit pointed
|
||
|
||
/-
|
||
We can define spheres with the following possible indices:
|
||
- trunc_index (defining S^-2 = S^-1 = empty)
|
||
- nat (forgetting that S^-1 = empty)
|
||
- nat, but counting wrong (S^0 = empty, S^1 = bool, ...)
|
||
- some new type "integers >= -1"
|
||
We choose the last option here.
|
||
-/
|
||
|
||
/- Sphere levels -/
|
||
|
||
inductive sphere_index : Type₀ :=
|
||
| minus_one : sphere_index
|
||
| succ : sphere_index → sphere_index
|
||
|
||
namespace trunc_index
|
||
definition sub_one [reducible] (n : sphere_index) : trunc_index :=
|
||
sphere_index.rec_on n -2 (λ n k, k.+1)
|
||
postfix `.-1`:(max+1) := sub_one
|
||
end trunc_index
|
||
|
||
namespace sphere_index
|
||
/-
|
||
notation for sphere_index is -1, 0, 1, ...
|
||
from 0 and up this comes from a coercion from num to sphere_index (via nat)
|
||
-/
|
||
postfix `.+1`:(max+1) := sphere_index.succ
|
||
postfix `.+2`:(max+1) := λ(n : sphere_index), (n .+1 .+1)
|
||
notation `-1` := minus_one
|
||
export [coercions] nat
|
||
notation `ℕ₋₁` := sphere_index
|
||
|
||
definition add (n m : sphere_index) : sphere_index :=
|
||
sphere_index.rec_on m n (λ k l, l .+1)
|
||
|
||
definition leq (n m : sphere_index) : Type₀ :=
|
||
sphere_index.rec_on n (λm, unit) (λ n p m, sphere_index.rec_on m (λ p, empty) (λ m q p, p m) p) m
|
||
|
||
infix `+1+`:65 := sphere_index.add
|
||
|
||
notation x <= y := sphere_index.leq x y
|
||
notation x ≤ y := sphere_index.leq x y
|
||
|
||
definition succ_le_succ {n m : sphere_index} (H : n ≤ m) : n.+1 ≤ m.+1 := H
|
||
definition le_of_succ_le_succ {n m : sphere_index} (H : n.+1 ≤ m.+1) : n ≤ m := H
|
||
definition minus_two_le (n : sphere_index) : -1 ≤ n := star
|
||
definition empty_of_succ_le_minus_two {n : sphere_index} (H : n .+1 ≤ -1) : empty := H
|
||
|
||
definition of_nat [coercion] [reducible] (n : nat) : sphere_index :=
|
||
(nat.rec_on n -1 (λ n k, k.+1)).+1
|
||
|
||
definition trunc_index_of_sphere_index [coercion] [reducible] (n : sphere_index) : trunc_index :=
|
||
(sphere_index.rec_on n -2 (λ n k, k.+1)).+1
|
||
|
||
definition sub_one [reducible] (n : ℕ) : sphere_index :=
|
||
nat.rec_on n -1 (λ n k, k.+1)
|
||
|
||
postfix `.-1`:(max+1) := sub_one
|
||
|
||
open trunc_index
|
||
definition sub_two_eq_sub_one_sub_one (n : ℕ) : n.-2 = n.-1.-1 :=
|
||
nat.rec_on n idp (λn p, ap trunc_index.succ p)
|
||
|
||
end sphere_index
|
||
|
||
open sphere_index equiv
|
||
|
||
definition sphere : sphere_index → Type₀
|
||
| -1 := empty
|
||
| n.+1 := susp (sphere n)
|
||
|
||
namespace sphere
|
||
|
||
definition base {n : ℕ} : sphere n := north
|
||
definition pointed_sphere [instance] [constructor] (n : ℕ) : pointed (sphere n) :=
|
||
pointed.mk base
|
||
definition Sphere [constructor] (n : ℕ) : Pointed := pointed.mk' (sphere n)
|
||
|
||
namespace ops
|
||
abbreviation S := sphere
|
||
notation `S.`:max := Sphere
|
||
end ops
|
||
open sphere.ops
|
||
|
||
definition equator (n : ℕ) : map₊ (S. n) (Ω (S. (succ n))) :=
|
||
pmap.mk (λa, merid a ⬝ (merid base)⁻¹) !con.right_inv
|
||
|
||
definition surf {n : ℕ} : Ω[n] S. n :=
|
||
nat.rec_on n (by esimp [Iterated_loop_space]; exact base)
|
||
(by intro n s;exact apn n (equator n) s)
|
||
|
||
definition bool_of_sphere : S 0 → bool :=
|
||
susp.rec ff tt (λx, empty.elim x)
|
||
|
||
definition sphere_of_bool : bool → S 0
|
||
| ff := north
|
||
| tt := south
|
||
|
||
definition sphere_equiv_bool : S 0 ≃ bool :=
|
||
equiv.MK bool_of_sphere
|
||
sphere_of_bool
|
||
(λb, match b with | tt := idp | ff := idp end)
|
||
(λx, susp.rec_on x idp idp (empty.rec _))
|
||
|
||
definition sphere_eq_bool : S 0 = bool :=
|
||
ua sphere_equiv_bool
|
||
|
||
definition sphere_eq_bool_pointed : S. 0 = Bool :=
|
||
Pointed_eq sphere_equiv_bool idp
|
||
|
||
definition pmap_sphere (A : Pointed) (n : ℕ) : map₊ (S. n) A ≃ Ω[n] A :=
|
||
begin
|
||
revert A, induction n with n IH,
|
||
{ intro A, rewrite [sphere_eq_bool_pointed], apply pmap_bool_equiv},
|
||
{ intro A, transitivity _, apply susp_adjoint_loop (S. n) A, apply IH}
|
||
end -- can we prove this in such a way that the function from left to right is apn _ surf?
|
||
|
||
protected definition elim {n : ℕ} {P : Pointed} (p : Ω[n] P) : map₊ (S. n) P :=
|
||
to_inv !pmap_sphere p
|
||
|
||
-- definition elim_surf {n : ℕ} {P : Pointed} (p : Ω[n] P) : apn n (sphere.elim p) surf = p :=
|
||
-- begin
|
||
-- induction n with n IH,
|
||
-- { esimp [apn,surf,sphere.elim,pmap_sphere], apply sorry},
|
||
-- { apply sorry}
|
||
-- end
|
||
|
||
end sphere
|
||
|
||
open sphere sphere.ops
|
||
|
||
structure weakly_constant [class] {A B : Type} (f : A → B) := --move
|
||
(is_weakly_constant : Πa a', f a = f a')
|
||
abbreviation wconst := @weakly_constant.is_weakly_constant
|
||
|
||
namespace is_trunc
|
||
open trunc_index
|
||
variables {n : ℕ} {A : Type}
|
||
definition is_trunc_of_pmap_sphere_constant
|
||
(H : Π(a : A) (f : map₊ (S. n) (pointed.Mk a)) (x : S n), f x = f base) : is_trunc (n.-2.+1) A :=
|
||
begin
|
||
apply iff.elim_right !is_trunc_iff_is_contr_loop,
|
||
intro a,
|
||
apply is_trunc_equiv_closed, apply pmap_sphere,
|
||
fapply is_contr.mk,
|
||
{ exact pmap.mk (λx, a) idp},
|
||
{ intro f, fapply pmap_eq,
|
||
{ intro x, esimp, refine !respect_pt⁻¹ ⬝ (!H ⬝ !H⁻¹)},
|
||
{ rewrite [▸*,con.right_inv,▸*,con.left_inv]}}
|
||
end
|
||
|
||
definition is_trunc_iff_map_sphere_constant
|
||
(H : Π(f : S n → A) (x : S n), f x = f base) : is_trunc (n.-2.+1) A :=
|
||
begin
|
||
apply is_trunc_of_pmap_sphere_constant,
|
||
intros, cases f with f p, esimp at *, apply H
|
||
end
|
||
|
||
definition pmap_sphere_constant_of_is_trunc' [H : is_trunc (n.-2.+1) A]
|
||
(a : A) (f : map₊ (S. n) (pointed.Mk a)) (x : S n) : f x = f base :=
|
||
begin
|
||
let H' := iff.elim_left (is_trunc_iff_is_contr_loop n A) H a,
|
||
let H'' := @is_trunc_equiv_closed_rev _ _ _ !pmap_sphere H',
|
||
assert p : (f = pmap.mk (λx, f base) (respect_pt f)),
|
||
apply is_hprop.elim,
|
||
exact ap10 (ap pmap.map p) x
|
||
end
|
||
|
||
definition pmap_sphere_constant_of_is_trunc [H : is_trunc (n.-2.+1) A]
|
||
(a : A) (f : map₊ (S. n) (pointed.Mk a)) (x y : S n) : f x = f y :=
|
||
let H := pmap_sphere_constant_of_is_trunc' a f in !H ⬝ !H⁻¹
|
||
|
||
definition map_sphere_constant_of_is_trunc [H : is_trunc (n.-2.+1) A]
|
||
(f : S n → A) (x y : S n) : f x = f y :=
|
||
pmap_sphere_constant_of_is_trunc (f base) (pmap.mk f idp) x y
|
||
|
||
definition map_sphere_constant_of_is_trunc_self [H : is_trunc (n.-2.+1) A]
|
||
(f : S n → A) (x : S n) : map_sphere_constant_of_is_trunc f x x = idp :=
|
||
!con.right_inv
|
||
|
||
end is_trunc
|