lean2/library/logic/axioms/examples/diaconescu.lean

58 lines
1.6 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
-/
import logic.axioms.hilbert logic.eq
open eq.ops
/-
Diaconescus theorem: excluded middle follows from Hilbert's choice operator, function extensionality,
and Prop extensionality
-/
section
parameter p : Prop
private definition U (x : Prop) : Prop := x = true p
private definition V (x : Prop) : Prop := x = false p
private noncomputable definition u := epsilon U
private noncomputable definition v := epsilon V
private lemma u_def : U u :=
epsilon_spec (exists.intro true (or.inl rfl))
private lemma v_def : V v :=
epsilon_spec (exists.intro false (or.inl rfl))
private lemma not_uv_or_p : ¬(u = v) p :=
or.elim u_def
(assume Hut : u = true,
or.elim v_def
(assume Hvf : v = false,
have Hne : ¬(u = v), from Hvf⁻¹ ▸ Hut⁻¹ ▸ true_ne_false,
or.inl Hne)
(assume Hp : p, or.inr Hp))
(assume Hp : p, or.inr Hp)
private lemma p_implies_uv : p → u = v :=
assume Hp : p,
have Hpred : U = V, from
funext (take x : Prop,
have Hl : (x = true p) → (x = false p), from
assume A, or.inr Hp,
have Hr : (x = false p) → (x = true p), from
assume A, or.inr Hp,
show (x = true p) = (x = false p), from
propext (iff.intro Hl Hr)),
have H' : epsilon U = epsilon V, from Hpred ▸ rfl,
show u = v, from H'
theorem em : p ¬p :=
have H : ¬(u = v) → ¬p, from mt p_implies_uv,
or.elim not_uv_or_p
(assume Hne : ¬(u = v), or.inr (H Hne))
(assume Hp : p, or.inl Hp)
end