206 lines
8.7 KiB
Text
206 lines
8.7 KiB
Text
/-
|
||
Copyright (c) 2015 Leonardo de Moura. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
|
||
Authors: Leonardo de Moura
|
||
|
||
Finite type (type class)
|
||
-/
|
||
import data.list data.bool
|
||
open list bool unit decidable option function
|
||
|
||
structure fintype [class] (A : Type) : Type :=
|
||
(elems : list A) (unique : nodup elems) (complete : ∀ a, a ∈ elems)
|
||
|
||
definition elements_of (A : Type) [h : fintype A] : list A :=
|
||
@fintype.elems A h
|
||
|
||
definition fintype_unit [instance] : fintype unit :=
|
||
fintype.mk [star] dec_trivial (λ u, match u with star := dec_trivial end)
|
||
|
||
definition fintype_bool [instance] : fintype bool :=
|
||
fintype.mk [ff, tt]
|
||
dec_trivial
|
||
(λ b, match b with | tt := dec_trivial | ff := dec_trivial end)
|
||
|
||
definition fintype_product [instance] {A B : Type} : Π [h₁ : fintype A] [h₂ : fintype B], fintype (A × B)
|
||
| (fintype.mk e₁ u₁ c₁) (fintype.mk e₂ u₂ c₂) :=
|
||
fintype.mk
|
||
(cross_product e₁ e₂)
|
||
(nodup_cross_product u₁ u₂)
|
||
(λ p,
|
||
match p with
|
||
(a, b) := mem_cross_product (c₁ a) (c₂ b)
|
||
end)
|
||
|
||
/- auxiliary function for finding 'a' s.t. f a ≠ g a -/
|
||
section find_discr
|
||
variables {A B : Type}
|
||
variable [h : decidable_eq B]
|
||
include h
|
||
definition find_discr (f g : A → B) : list A → option A
|
||
| [] := none
|
||
| (a::l) := if f a = g a then find_discr l else some a
|
||
|
||
theorem find_discr_nil (f g : A → B) : find_discr f g [] = none :=
|
||
rfl
|
||
|
||
theorem find_discr_cons_of_ne {f g : A → B} {a : A} (l : list A) : f a ≠ g a → find_discr f g (a::l) = some a :=
|
||
assume ne, if_neg ne
|
||
|
||
theorem find_discr_cons_of_eq {f g : A → B} {a : A} (l : list A) : f a = g a → find_discr f g (a::l) = find_discr f g l :=
|
||
assume eq, if_pos eq
|
||
|
||
theorem ne_of_find_discr_eq_some {f g : A → B} {a : A} : ∀ {l}, find_discr f g l = some a → f a ≠ g a
|
||
| [] e := option.no_confusion e
|
||
| (x::l) e := by_cases
|
||
(λ h : f x = g x,
|
||
have aux : find_discr f g l = some a, by rewrite [find_discr_cons_of_eq l h at e]; exact e,
|
||
ne_of_find_discr_eq_some aux)
|
||
(λ h : f x ≠ g x,
|
||
have aux : some x = some a, by rewrite [find_discr_cons_of_ne l h at e]; exact e,
|
||
option.no_confusion aux (λ xeqa : x = a, eq.rec_on xeqa h))
|
||
|
||
theorem all_eq_of_find_discr_eq_none {f g : A → B} : ∀ {l}, find_discr f g l = none → ∀ a, a ∈ l → f a = g a
|
||
| [] e a i := absurd i !not_mem_nil
|
||
| (x::l) e a i := by_cases
|
||
(λ fx_eq_gx : f x = g x,
|
||
have aux : find_discr f g l = none, by rewrite [find_discr_cons_of_eq l fx_eq_gx at e]; exact e,
|
||
or.elim (eq_or_mem_of_mem_cons i)
|
||
(λ aeqx : a = x, by rewrite [-aeqx at fx_eq_gx]; exact fx_eq_gx)
|
||
(λ ainl : a ∈ l, all_eq_of_find_discr_eq_none aux a ainl))
|
||
(λ fx_ne_gx : f x ≠ g x,
|
||
have aux : some x = none, by rewrite [find_discr_cons_of_ne l fx_ne_gx at e]; exact e,
|
||
option.no_confusion aux)
|
||
end find_discr
|
||
|
||
definition decidable_eq_fun [instance] {A B : Type} [h₁ : fintype A] [h₂ : decidable_eq B] : decidable_eq (A → B) :=
|
||
λ f g,
|
||
match h₁ with
|
||
| fintype.mk e u c :=
|
||
match find_discr f g e with
|
||
| some a := λ h : find_discr f g e = some a, inr (λ f_eq_g : f = g, absurd (by rewrite f_eq_g) (ne_of_find_discr_eq_some h))
|
||
| none := λ h : find_discr f g e = none, inl (show f = g, from funext (λ a : A, all_eq_of_find_discr_eq_none h a (c a)))
|
||
end rfl
|
||
end
|
||
|
||
section check_pred
|
||
variables {A : Type}
|
||
|
||
definition check_pred (p : A → Prop) [h : decidable_pred p] : list A → bool
|
||
| [] := tt
|
||
| (a::l) := if p a then check_pred l else ff
|
||
|
||
definition check_pred_cons_of_pos {p : A → Prop} [h : decidable_pred p] {a : A} (l : list A) : p a → check_pred p (a::l) = check_pred p l :=
|
||
assume pa, if_pos pa
|
||
|
||
definition check_pred_cons_of_neg {p : A → Prop} [h : decidable_pred p] {a : A} (l : list A) : ¬ p a → check_pred p (a::l) = ff :=
|
||
assume npa, if_neg npa
|
||
|
||
definition all_of_check_pred_eq_tt {p : A → Prop} [h : decidable_pred p] : ∀ {l : list A}, check_pred p l = tt → ∀ {a}, a ∈ l → p a
|
||
| [] eqtt a ainl := absurd ainl !not_mem_nil
|
||
| (b::l) eqtt a ainbl := by_cases
|
||
(λ pb : p b, or.elim (eq_or_mem_of_mem_cons ainbl)
|
||
(λ aeqb : a = b, by rewrite [aeqb]; exact pb)
|
||
(λ ainl : a ∈ l,
|
||
have eqtt₁ : check_pred p l = tt, by rewrite [check_pred_cons_of_pos _ pb at eqtt]; exact eqtt,
|
||
all_of_check_pred_eq_tt eqtt₁ ainl))
|
||
(λ npb : ¬ p b,
|
||
by rewrite [check_pred_cons_of_neg _ npb at eqtt]; exact (bool.no_confusion eqtt))
|
||
|
||
definition ex_of_check_pred_eq_ff {p : A → Prop} [h : decidable_pred p] : ∀ {l : list A}, check_pred p l = ff → ∃ w, ¬ p w
|
||
| [] eqtt := bool.no_confusion eqtt
|
||
| (a::l) eqtt := by_cases
|
||
(λ pa : p a,
|
||
have eqtt₁ : check_pred p l = ff, by rewrite [check_pred_cons_of_pos _ pa at eqtt]; exact eqtt,
|
||
ex_of_check_pred_eq_ff eqtt₁)
|
||
(λ npa : ¬ p a, exists.intro a npa)
|
||
end check_pred
|
||
|
||
definition decidable_forall_finite [instance] {A : Type} {p : A → Prop} [h₁ : fintype A] [h₂ : decidable_pred p]
|
||
: decidable (∀ x : A, p x) :=
|
||
match h₁ with
|
||
| fintype.mk e u c :=
|
||
match check_pred p e with
|
||
| tt := λ h : check_pred p e = tt, inl (λ a : A, all_of_check_pred_eq_tt h (c a))
|
||
| ff := λ h : check_pred p e = ff,
|
||
inr (λ n : (∀ x, p x),
|
||
obtain (a : A) (w : ¬ p a), from ex_of_check_pred_eq_ff h,
|
||
absurd (n a) w)
|
||
end rfl
|
||
end
|
||
|
||
definition decidable_exists_finite [instance] {A : Type} {p : A → Prop} [h₁ : fintype A] [h₂ : decidable_pred p]
|
||
: decidable (∃ x : A, p x) :=
|
||
match h₁ with
|
||
| fintype.mk e u c :=
|
||
match check_pred (λ a, ¬ p a) e with
|
||
| tt := λ h : check_pred (λ a, ¬ p a) e = tt, inr (λ ex : (∃ x, p x),
|
||
obtain x px, from ex,
|
||
absurd px (all_of_check_pred_eq_tt h (c x)))
|
||
| ff := λ h : check_pred (λ a, ¬ p a) e = ff, inl (
|
||
assert aux₁ : ∃ x, ¬¬p x, from ex_of_check_pred_eq_ff h,
|
||
obtain x nnpx, from aux₁, exists.intro x (not_not_elim nnpx))
|
||
end rfl
|
||
end
|
||
|
||
open list.as_type
|
||
-- Auxiliary function for returning a list with all elements of the type: (list.as_type l)
|
||
-- Remark ⟪s⟫ is notation for (list.as_type l)
|
||
-- We use this function to define the instance for (fintype ⟪s⟫)
|
||
private definition ltype_elems {A : Type} {s : list A} : Π {l : list A}, l ⊆ s → list ⟪s⟫
|
||
| [] h := []
|
||
| (a::l) h := lval a (h a !mem_cons) :: ltype_elems (sub_of_cons_sub h)
|
||
|
||
private theorem mem_of_mem_ltype_elems {A : Type} {a : A} {s : list A}
|
||
: Π {l : list A} {h : l ⊆ s} {m : a ∈ s}, mk a m ∈ ltype_elems h → a ∈ l
|
||
| [] h m lin := absurd lin !not_mem_nil
|
||
| (b::l) h m lin := or.elim (eq_or_mem_of_mem_cons lin)
|
||
(λ leq : mk a m = mk b (h b (mem_cons b l)),
|
||
as_type.no_confusion leq (λ aeqb em, by rewrite [aeqb]; exact !mem_cons))
|
||
(λ linl : mk a m ∈ ltype_elems (sub_of_cons_sub h),
|
||
have ainl : a ∈ l, from mem_of_mem_ltype_elems linl,
|
||
mem_cons_of_mem _ ainl)
|
||
|
||
private theorem nodup_ltype_elems {A : Type} {s : list A} : Π {l : list A} (d : nodup l) (h : l ⊆ s), nodup (ltype_elems h)
|
||
| [] d h := nodup_nil
|
||
| (a::l) d h :=
|
||
have d₁ : nodup l, from nodup_of_nodup_cons d,
|
||
have nainl : a ∉ l, from not_mem_of_nodup_cons d,
|
||
let h₁ : l ⊆ s := sub_of_cons_sub h in
|
||
have d₂ : nodup (ltype_elems h₁), from nodup_ltype_elems d₁ h₁,
|
||
have nin : mk a (h a (mem_cons a l)) ∉ ltype_elems h₁, from
|
||
assume ab, absurd (mem_of_mem_ltype_elems ab) nainl,
|
||
nodup_cons nin d₂
|
||
|
||
private theorem mem_ltype_elems {A : Type} {s : list A} {a : ⟪s⟫}
|
||
: Π {l : list A} (h : l ⊆ s), value a ∈ l → a ∈ ltype_elems h
|
||
| [] h vainl := absurd vainl !not_mem_nil
|
||
| (b::l) h vainbl := or.elim (eq_or_mem_of_mem_cons vainbl)
|
||
(λ vaeqb : value a = b,
|
||
begin
|
||
revert vaeqb h,
|
||
-- TODO(Leo): check why 'cases a with va, ma' produces an incorrect proof
|
||
apply as_type.cases_on a,
|
||
intro va ma vaeqb,
|
||
rewrite -vaeqb, intro h,
|
||
apply mem_cons
|
||
end)
|
||
(λ vainl : value a ∈ l,
|
||
have s₁ : l ⊆ s, from sub_of_cons_sub h,
|
||
have aux : a ∈ ltype_elems (sub_of_cons_sub h), from mem_ltype_elems s₁ vainl,
|
||
mem_cons_of_mem _ aux)
|
||
|
||
definition fintype_list_as_type [instance] {A : Type} [h : decidable_eq A] {s : list A} : fintype ⟪s⟫ :=
|
||
let nds : list A := erase_dup s in
|
||
have sub₁ : nds ⊆ s, from erase_dup_sub s,
|
||
have sub₂ : s ⊆ nds, from sub_erase_dup s,
|
||
have dnds : nodup nds, from nodup_erase_dup s,
|
||
let e : list ⟪s⟫ := ltype_elems sub₁ in
|
||
fintype.mk
|
||
e
|
||
(nodup_ltype_elems dnds sub₁)
|
||
(λ a : ⟪s⟫, show a ∈ e, from
|
||
have vains : value a ∈ s, from is_member a,
|
||
have vainnds : value a ∈ nds, from sub₂ vains,
|
||
mem_ltype_elems sub₁ vainnds)
|