lean2/library/data/nat/parity.lean
Leonardo de Moura 01ba0b4747 feat(library/logic/equiv): add equivalence between types
This is a good test for the simplifier
2015-07-06 11:17:03 -07:00

205 lines
6.8 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
Parity
-/
import data.nat.div logic.identities
namespace nat
open decidable
definition even (n : nat) := n mod 2 = 0
definition decidable_even [instance] : ∀ n, decidable (even n) :=
λ n, !nat.has_decidable_eq
definition odd (n : nat) := ¬even n
definition decidable_odd [instance] : ∀ n, decidable (odd n) :=
λ n, decidable_not
lemma even_of_dvd {n} : 2 n → even n :=
mod_eq_zero_of_dvd
lemma dvd_of_even {n} : even n → 2 n :=
dvd_of_mod_eq_zero
lemma not_odd_zero : ¬ odd 0 :=
dec_trivial
lemma even_zero : even 0 :=
dec_trivial
lemma odd_one : odd 1 :=
dec_trivial
lemma not_even_one : ¬ even 1 :=
dec_trivial
lemma odd_eq_not_even : ∀ n, odd n = ¬ even n :=
λ n, rfl
lemma odd_iff_not_even : ∀ n, odd n ↔ ¬ even n :=
λ n, !iff.refl
lemma odd_of_not_even {n} : ¬ even n → odd n :=
λ h, iff.mp' !odd_iff_not_even h
lemma even_of_not_odd {n} : ¬ odd n → even n :=
λ h, not_not_elim (iff.mp (not_iff_not_of_iff !odd_iff_not_even) h)
lemma not_odd_of_even {n} : even n → ¬ odd n :=
λ h, iff.mp' (not_iff_not_of_iff !odd_iff_not_even) (not_not_intro h)
lemma not_even_of_odd {n} : odd n → ¬ even n :=
λ h, iff.mp !odd_iff_not_even h
lemma odd_succ_of_even {n} : even n → odd (succ n) :=
λ h, by_contradiction (λ hn : ¬ odd (succ n),
assert 0 = 1, from calc
0 = (n+1) mod 2 : even_of_not_odd hn
... = 1 mod 2 : add_mod_eq_add_mod_right 1 h,
by contradiction)
lemma eq_1_of_ne_0_lt_2 : ∀ {n : nat}, n ≠ 0 → n < 2 → n = 1
| 0 h₁ h₂ := absurd rfl h₁
| 1 h₁ h₂ := rfl
| (n+2) h₁ h₂ := absurd (lt_of_succ_lt_succ (lt_of_succ_lt_succ h₂)) !not_lt_zero
lemma mod_eq_of_odd {n} : odd n → n mod 2 = 1 :=
λ h,
have h₁ : ¬ n mod 2 = 0, from h,
have h₂ : n mod 2 < 2, from mod_lt n dec_trivial,
eq_1_of_ne_0_lt_2 h₁ h₂
lemma odd_of_mod_eq {n} : n mod 2 = 1 → odd n :=
λ h, by_contradiction (λ hn,
assert h₁ : n mod 2 = 0, from even_of_not_odd hn,
by rewrite h at h₁; contradiction)
lemma even_succ_of_odd {n} : odd n → even (succ n) :=
λ h,
have h₁ : n mod 2 = 1, from mod_eq_of_odd h,
have h₂ : n mod 2 = 1 mod 2, from mod_eq_of_odd h,
have h₃ : (n+1) mod 2 = 0, from add_mod_eq_add_mod_right 1 h₂,
h₃
lemma odd_succ_succ_of_odd {n} : odd n → odd (succ (succ n)) :=
λ h, odd_succ_of_even (even_succ_of_odd h)
lemma even_succ_succ_of_even {n} : even n → even (succ (succ n)) :=
λ h, even_succ_of_odd (odd_succ_of_even h)
lemma even_of_odd_succ {n} : odd (succ n) → even n :=
λ h, by_contradiction (λ he,
have h₁ : odd n, from odd_of_not_even he,
have h₂ : even (succ n), from even_succ_of_odd h₁,
absurd h₂ (not_even_of_odd h))
lemma odd_of_even_succ {n} : even (succ n) → odd n :=
λ h, by_contradiction (λ he,
have h₁ : even n, from even_of_not_odd he,
have h₂ : odd (succ n), from odd_succ_of_even h₁,
absurd h (not_even_of_odd h₂))
lemma even_of_even_succ_succ {n} : even (succ (succ n)) → even n :=
λ h, even_of_odd_succ (odd_of_even_succ h)
lemma odd_of_odd_succ_succ {n} : odd (succ (succ n)) → odd n :=
λ h, odd_of_even_succ (even_of_odd_succ h)
lemma dvd_of_odd {n} : odd n → 2 n+1 :=
λ h, dvd_of_even (even_succ_of_odd h)
lemma odd_of_dvd {n} : 2 n+1 → odd n :=
λ h, odd_of_even_succ (even_of_dvd h)
lemma even_two_mul : ∀ n, even (2 * n) :=
λ n, even_of_dvd (dvd_mul_right 2 n)
lemma odd_two_mul_plus_one : ∀ n, odd (2 * n + 1) :=
λ n, odd_succ_of_even (even_two_mul n)
lemma not_even_two_mul_plus_one : ∀ n, ¬ even (2 * n + 1) :=
λ n, not_even_of_odd (odd_two_mul_plus_one n)
lemma not_odd_two_mul : ∀ n, ¬ odd (2 * n) :=
λ n, not_odd_of_even (even_two_mul n)
lemma even_pred_of_odd : ∀ {n}, odd n → even (pred n)
| 0 h := absurd h not_odd_zero
| (n+1) h := even_of_odd_succ h
lemma even_or_odd : ∀ n, even n odd n :=
λ n, by_cases
(λ h : even n, or.inl h)
(λ h : ¬ even n, or.inr (odd_of_not_even h))
lemma exists_of_even {n} : even n → ∃ k, n = 2*k :=
λ h, exists_eq_mul_right_of_dvd (dvd_of_even h)
lemma exists_of_odd : ∀ {n}, odd n → ∃ k, n = 2*k + 1
| 0 h := absurd h not_odd_zero
| (n+1) h :=
obtain k (hk : n = 2*k), from exists_of_even (even_of_odd_succ h),
exists.intro k (by subst n)
lemma even_of_exists {n} : (∃ k, n = 2 * k) → even n :=
λ h, obtain k (hk : n = 2 * k), from h,
have h₁ : 2 n, by subst n; apply dvd_mul_right,
even_of_dvd h₁
lemma odd_of_exists {n} : (∃ k, n = 2 * k + 1) → odd n :=
λ h, by_contradiction (λ hn,
have h₁ : even n, from even_of_not_odd hn,
have h₂ : ∃ k, n = 2 * k, from exists_of_even h₁,
obtain k₁ (hk₁ : n = 2 * k₁ + 1), from h,
obtain k₂ (hk₂ : n = 2 * k₂), from h₂,
assert h₃ : (2 * k₁ + 1) mod 2 = (2 * k₂) mod 2, by rewrite [-hk₁, -hk₂],
begin
rewrite [mul_mod_right at h₃, add.comm at h₃, add_mul_mod_self_left at h₃],
contradiction
end)
lemma even_add_of_even_of_even {n m} : even n → even m → even (n+m) :=
λ h₁ h₂,
obtain k₁ (hk₁ : n = 2 * k₁), from exists_of_even h₁,
obtain k₂ (hk₂ : m = 2 * k₂), from exists_of_even h₂,
even_of_exists (exists.intro (k₁+k₂) (by rewrite [hk₁, hk₂, mul.left_distrib]))
lemma even_add_of_odd_of_odd {n m} : odd n → odd m → even (n+m) :=
λ h₁ h₂,
assert h₃ : even (succ n + succ m), from even_add_of_even_of_even (even_succ_of_odd h₁) (even_succ_of_odd h₂),
have h₄ : even(succ (succ (n + m))), by rewrite [add_succ at h₃, succ_add at h₃]; exact h₃,
even_of_even_succ_succ h₄
lemma odd_add_of_even_of_odd {n m} : even n → odd m → odd (n+m) :=
λ h₁ h₂,
assert h₃ : even (n + succ m), from even_add_of_even_of_even h₁ (even_succ_of_odd h₂),
odd_of_even_succ h₃
lemma odd_add_of_odd_of_even {n m} : odd n → even m → odd (n+m) :=
λ h₁ h₂,
assert h₃ : odd (m+n), from odd_add_of_even_of_odd h₂ h₁,
by rewrite add.comm at h₃; exact h₃
lemma even_mul_of_even_left {n} (m) : even n → even (n*m) :=
λ h,
obtain k (hk : n = 2*k), from exists_of_even h,
even_of_exists (exists.intro (k*m) (by rewrite [hk, mul.assoc]))
lemma even_mul_of_even_right {n} (m) : even n → even (m*n) :=
λ h₁,
assert h₂ : even (n*m), from even_mul_of_even_left _ h₁,
by rewrite mul.comm at h₂; exact h₂
lemma odd_mul_of_odd_of_odd {n m} : odd n → odd m → odd (n*m) :=
λ h₁ h₂,
assert h₃ : even (n * succ m), from even_mul_of_even_right _ (even_succ_of_odd h₂),
assert h₄ : even (n * m + n), by rewrite mul_succ at h₃; exact h₃,
by_contradiction (λ hn,
assert h₅ : even (n*m), from even_of_not_odd hn,
absurd h₄ (not_even_of_odd (odd_add_of_even_of_odd h₅ h₁)))
end nat