lean2/hott/algebra/category/yoneda.hlean
2015-05-23 20:52:58 +10:00

206 lines
9 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
-/
--note: modify definition in category.set
import .constructions.functor .constructions.hset .constructions.product .constructions.opposite
open category eq category.ops functor prod.ops is_trunc iso
namespace yoneda
set_option class.conservative false
definition representable_functor_assoc [C : Precategory] {a1 a2 a3 a4 a5 a6 : C}
(f1 : hom a5 a6) (f2 : hom a4 a5) (f3 : hom a3 a4) (f4 : hom a2 a3) (f5 : hom a1 a2)
: (f1 ∘ f2) ∘ f3 ∘ (f4 ∘ f5) = f1 ∘ (f2 ∘ f3 ∘ f4) ∘ f5 :=
calc
_ = f1 ∘ f2 ∘ f3 ∘ f4 ∘ f5 : by rewrite -assoc
... = f1 ∘ (f2 ∘ f3) ∘ f4 ∘ f5 : by rewrite -assoc
... = f1 ∘ ((f2 ∘ f3) ∘ f4) ∘ f5 : by rewrite -(assoc (f2 ∘ f3) _ _)
... = _ : by rewrite (assoc f2 f3 f4)
definition hom_functor (C : Precategory) : Cᵒᵖ ×c C ⇒ set :=
functor.mk (λ(x : Cᵒᵖ ×c C), homset x.1 x.2)
(λ(x y : Cᵒᵖ ×c C) (f : _) (h : homset x.1 x.2), f.2 ∘⁅ C ⁆ (h ∘⁅ C ⁆ f.1))
begin
intro x, apply eq_of_homotopy, intro h, exact (!id_left ⬝ !id_right)
end
begin
intro x y z g f, apply eq_of_homotopy, intro h,
exact (representable_functor_assoc g.2 f.2 h f.1 g.1),
end
end yoneda
open is_equiv equiv
namespace functor
open prod nat_trans
variables {C D E : Precategory} (F : C ×c D ⇒ E) (G : C ⇒ E ^c D)
definition functor_curry_ob [reducible] (c : C) : E ^c D :=
functor.mk (λd, F (c,d))
(λd d' g, F (id, g))
(λd, !respect_id)
(λd₁ d₂ d₃ g' g, calc
F (id, g' ∘ g) = F (id ∘ id, g' ∘ g) : by rewrite id_comp
... = F ((id,g') ∘ (id, g)) : by esimp
... = F (id,g') ∘ F (id, g) : by rewrite respect_comp)
local abbreviation Fob := @functor_curry_ob
definition functor_curry_hom ⦃c c' : C⦄ (f : c ⟶ c') : Fob F c ⟹ Fob F c' :=
nat_trans.mk (λd, F (f, id))
(λd d' g, calc
F (id, g) ∘ F (f, id) = F (id ∘ f, g ∘ id) : respect_comp F
... = F (f, g ∘ id) : by rewrite id_left
... = F (f, g) : by rewrite id_right
... = F (f ∘ id, g) : by rewrite id_right
... = F (f ∘ id, id ∘ g) : by rewrite id_left
... = F (f, id) ∘ F (id, g) : (respect_comp F (f, id) (id, g))⁻¹ᵖ)
local abbreviation Fhom := @functor_curry_hom
theorem functor_curry_hom_def ⦃c c' : C⦄ (f : c ⟶ c') (d : D) :
(Fhom F f) d = to_fun_hom F (f, id) := idp
theorem functor_curry_id (c : C) : Fhom F (ID c) = nat_trans.id :=
nat_trans_eq (λd, respect_id F _)
theorem functor_curry_comp ⦃c c' c'' : C⦄ (f' : c' ⟶ c'') (f : c ⟶ c')
: Fhom F (f' ∘ f) = Fhom F f' ∘n Fhom F f :=
nat_trans_eq (λd, calc
natural_map (Fhom F (f' ∘ f)) d = F (f' ∘ f, id) : functor_curry_hom_def
... = F (f' ∘ f, id ∘ id) : by rewrite id_comp
... = F ((f',id) ∘ (f, id)) : by esimp
... = F (f',id) ∘ F (f, id) : respect_comp F
... = natural_map ((Fhom F f') ∘ (Fhom F f)) d : by esimp)
definition functor_curry [reducible] : C ⇒ E ^c D :=
functor.mk (functor_curry_ob F)
(functor_curry_hom F)
(functor_curry_id F)
(functor_curry_comp F)
definition functor_uncurry_ob [reducible] (p : C ×c D) : E :=
to_fun_ob (G p.1) p.2
local abbreviation Gob := @functor_uncurry_ob
definition functor_uncurry_hom ⦃p p' : C ×c D⦄ (f : hom p p') : Gob G p ⟶ Gob G p' :=
to_fun_hom (to_fun_ob G p'.1) f.2 ∘ natural_map (to_fun_hom G f.1) p.2
local abbreviation Ghom := @functor_uncurry_hom
theorem functor_uncurry_id (p : C ×c D) : Ghom G (ID p) = id :=
calc
Ghom G (ID p) = to_fun_hom (to_fun_ob G p.1) id ∘ natural_map (to_fun_hom G id) p.2 : by esimp
... = id ∘ natural_map (to_fun_hom G id) p.2 : by rewrite respect_id
... = id ∘ natural_map nat_trans.id p.2 : by rewrite respect_id
... = id : id_comp
theorem functor_uncurry_comp ⦃p p' p'' : C ×c D⦄ (f' : p' ⟶ p'') (f : p ⟶ p')
: Ghom G (f' ∘ f) = Ghom G f' ∘ Ghom G f :=
calc
Ghom G (f' ∘ f)
= to_fun_hom (to_fun_ob G p''.1) (f'.2 ∘ f.2) ∘ natural_map (to_fun_hom G (f'.1 ∘ f.1)) p.2 : by esimp
... = (to_fun_hom (to_fun_ob G p''.1) f'.2 ∘ to_fun_hom (to_fun_ob G p''.1) f.2)
∘ natural_map (to_fun_hom G (f'.1 ∘ f.1)) p.2 : by rewrite respect_comp
... = (to_fun_hom (to_fun_ob G p''.1) f'.2 ∘ to_fun_hom (to_fun_ob G p''.1) f.2)
∘ natural_map (to_fun_hom G f'.1 ∘ to_fun_hom G f.1) p.2 : by rewrite respect_comp
... = (to_fun_hom (to_fun_ob G p''.1) f'.2 ∘ to_fun_hom (to_fun_ob G p''.1) f.2)
∘ (natural_map (to_fun_hom G f'.1) p.2 ∘ natural_map (to_fun_hom G f.1) p.2) : by esimp
... = (to_fun_hom (to_fun_ob G p''.1) f'.2 ∘ to_fun_hom (to_fun_ob G p''.1) f.2)
∘ (natural_map (to_fun_hom G f'.1) p.2 ∘ natural_map (to_fun_hom G f.1) p.2) : by esimp
... = (to_fun_hom (to_fun_ob G p''.1) f'.2 ∘ natural_map (to_fun_hom G f'.1) p'.2)
∘ (to_fun_hom (to_fun_ob G p'.1) f.2 ∘ natural_map (to_fun_hom G f.1) p.2) :
square_prepostcompose (!naturality⁻¹ᵖ) _ _
... = Ghom G f' ∘ Ghom G f : by esimp
definition functor_uncurry [reducible] : C ×c D ⇒ E :=
functor.mk (functor_uncurry_ob G)
(functor_uncurry_hom G)
(functor_uncurry_id G)
(functor_uncurry_comp G)
theorem functor_uncurry_functor_curry : functor_uncurry (functor_curry F) = F :=
functor_eq (λp, ap (to_fun_ob F) !prod.eta)
begin
intro cd cd' fg,
cases cd with c d, cases cd' with c' d', cases fg with f g,
transitivity to_fun_hom (functor_uncurry (functor_curry F)) (f, g),
apply id_leftright,
show (functor_uncurry (functor_curry F)) (f, g) = F (f,g),
from calc
(functor_uncurry (functor_curry F)) (f, g) = to_fun_hom F (id, g) ∘ to_fun_hom F (f, id) : by esimp
... = F (id ∘ f, g ∘ id) : respect_comp F (id,g) (f,id)
... = F (f, g ∘ id) : by rewrite id_left
... = F (f,g) : by rewrite id_right,
end
definition functor_curry_functor_uncurry_ob (c : C)
: functor_curry (functor_uncurry G) c = G c :=
begin
fapply functor_eq,
{intro d, reflexivity},
{intro d d' g,
apply concat, apply id_leftright,
show to_fun_hom (functor_curry (functor_uncurry G) c) g = to_fun_hom (G c) g,
from calc
to_fun_hom (functor_curry (functor_uncurry G) c) g
= to_fun_hom (G c) g ∘ natural_map (to_fun_hom G (ID c)) d : by esimp
... = to_fun_hom (G c) g ∘ natural_map (ID (G c)) d : by rewrite respect_id
... = to_fun_hom (G c) g ∘ id : by reflexivity
... = to_fun_hom (G c) g : id_right}
end
theorem functor_curry_functor_uncurry : functor_curry (functor_uncurry G) = G :=
begin
fapply functor_eq, exact (functor_curry_functor_uncurry_ob G),
intro c c' f,
fapply nat_trans_eq,
intro d,
apply concat,
{apply (ap (λx, x ∘ _)),
apply concat, apply natural_map_hom_of_eq, apply (ap hom_of_eq), apply ap010_functor_eq},
apply concat,
{apply (ap (λx, _ ∘ x)), apply (ap (λx, _ ∘ x)),
apply concat, apply natural_map_inv_of_eq,
apply (ap (λx, hom_of_eq x⁻¹)), apply ap010_functor_eq},
apply concat, apply id_leftright,
apply concat, apply (ap (λx, x ∘ _)), apply respect_id,
apply id_left
end
definition prod_functor_equiv_functor_functor (C D E : Precategory)
: (C ×c D ⇒ E) ≃ (C ⇒ E ^c D) :=
equiv.MK functor_curry
functor_uncurry
functor_curry_functor_uncurry
functor_uncurry_functor_curry
definition functor_prod_flip (C D : Precategory) : C ×c D ⇒ D ×c C :=
functor.mk (λp, (p.2, p.1))
(λp p' h, (h.2, h.1))
(λp, idp)
(λp p' p'' h' h, idp)
definition functor_prod_flip_functor_prod_flip (C D : Precategory)
: functor_prod_flip D C ∘f (functor_prod_flip C D) = functor.id :=
begin
fapply functor_eq, {intro p, apply prod.eta},
intro p p' h, cases p with c d, cases p' with c' d',
apply id_leftright,
end
end functor
open functor
namespace yoneda
--should this be defined as "yoneda_embedding Cᵒᵖ"?
definition contravariant_yoneda_embedding (C : Precategory) : Cᵒᵖ ⇒ set ^c C :=
functor_curry !hom_functor
definition yoneda_embedding (C : Precategory) : C ⇒ set ^c Cᵒᵖ :=
functor_curry (!hom_functor ∘f !functor_prod_flip)
end yoneda