a618bd7d6c
Before this commit we were using overloading for concrete structures and type classes for abstract ones. This is the first of series of commits that implement this modification
516 lines
20 KiB
Text
516 lines
20 KiB
Text
/-
|
|
Copyright (c) 2014 Robert Lewis. All rights reserved.
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
Authors: Robert Lewis
|
|
-/
|
|
import algebra.ordered_ring algebra.field
|
|
open eq eq.ops
|
|
|
|
namespace algebra
|
|
|
|
structure linear_ordered_field [class] (A : Type) extends linear_ordered_ring A, field A
|
|
|
|
section linear_ordered_field
|
|
|
|
variable {A : Type}
|
|
variables [s : linear_ordered_field A] {a b c d : A}
|
|
include s
|
|
|
|
-- helpers for following
|
|
theorem mul_zero_lt_mul_inv_of_pos (H : 0 < a) : a * 0 < a * (1 / a) :=
|
|
calc
|
|
a * 0 = 0 : mul_zero
|
|
... < 1 : zero_lt_one
|
|
... = a * a⁻¹ : mul_inv_cancel (ne.symm (ne_of_lt H))
|
|
... = a * (1 / a) : inv_eq_one_div
|
|
|
|
theorem mul_zero_lt_mul_inv_of_neg (H : a < 0) : a * 0 < a * (1 / a) :=
|
|
calc
|
|
a * 0 = 0 : mul_zero
|
|
... < 1 : zero_lt_one
|
|
... = a * a⁻¹ : mul_inv_cancel (ne_of_lt H)
|
|
... = a * (1 / a) : inv_eq_one_div
|
|
|
|
theorem one_div_pos_of_pos (H : 0 < a) : 0 < 1 / a :=
|
|
lt_of_mul_lt_mul_left (mul_zero_lt_mul_inv_of_pos H) (le_of_lt H)
|
|
|
|
theorem one_div_neg_of_neg (H : a < 0) : 1 / a < 0 :=
|
|
gt_of_mul_lt_mul_neg_left (mul_zero_lt_mul_inv_of_neg H) (le_of_lt H)
|
|
|
|
|
|
theorem le_mul_of_ge_one_right (Hb : b ≥ 0) (H : a ≥ 1) : b ≤ b * a :=
|
|
mul_one _ ▸ (mul_le_mul_of_nonneg_left H Hb)
|
|
|
|
theorem lt_mul_of_gt_one_right (Hb : b > 0) (H : a > 1) : b < b * a :=
|
|
mul_one _ ▸ (mul_lt_mul_of_pos_left H Hb)
|
|
|
|
theorem one_le_div_iff_le (a : A) {b : A} (Hb : b > 0) : 1 ≤ a / b ↔ b ≤ a :=
|
|
have Hb' : b ≠ 0, from ne.symm (ne_of_lt Hb),
|
|
iff.intro
|
|
(assume H : 1 ≤ a / b,
|
|
calc
|
|
b = b : refl
|
|
... ≤ b * (a / b) : le_mul_of_ge_one_right (le_of_lt Hb) H
|
|
... = a : mul_div_cancel' Hb')
|
|
(assume H : b ≤ a,
|
|
have Hbinv : 1 / b > 0, from one_div_pos_of_pos Hb, calc
|
|
1 = b * (1 / b) : mul_one_div_cancel Hb'
|
|
... ≤ a * (1 / b) : mul_le_mul_of_nonneg_right H (le_of_lt Hbinv)
|
|
... = a / b : div_eq_mul_one_div)
|
|
|
|
theorem le_of_one_le_div (Hb : b > 0) (H : 1 ≤ a / b) : b ≤ a :=
|
|
(iff.mp (!one_le_div_iff_le Hb)) H
|
|
|
|
theorem one_le_div_of_le (Hb : b > 0) (H : b ≤ a) : 1 ≤ a / b :=
|
|
(iff.mpr (!one_le_div_iff_le Hb)) H
|
|
|
|
theorem one_lt_div_iff_lt (a : A) {b : A} (Hb : b > 0) : 1 < a / b ↔ b < a :=
|
|
have Hb' : b ≠ 0, from ne.symm (ne_of_lt Hb),
|
|
iff.intro
|
|
(assume H : 1 < a / b,
|
|
calc
|
|
b < b * (a / b) : lt_mul_of_gt_one_right Hb H
|
|
... = a : mul_div_cancel' Hb')
|
|
(assume H : b < a,
|
|
have Hbinv : 1 / b > 0, from one_div_pos_of_pos Hb, calc
|
|
1 = b * (1 / b) : mul_one_div_cancel Hb'
|
|
... < a * (1 / b) : mul_lt_mul_of_pos_right H Hbinv
|
|
... = a / b : div_eq_mul_one_div)
|
|
|
|
theorem lt_of_one_lt_div (Hb : b > 0) (H : 1 < a / b) : b < a :=
|
|
(iff.mp (!one_lt_div_iff_lt Hb)) H
|
|
|
|
theorem one_lt_div_of_lt (Hb : b > 0) (H : b < a) : 1 < a / b :=
|
|
(iff.mpr (!one_lt_div_iff_lt Hb)) H
|
|
|
|
theorem exists_lt (a : A) : ∃ x, x < a :=
|
|
have H : a - 1 < a, from add_lt_of_le_of_neg (le.refl _) zero_gt_neg_one,
|
|
exists.intro _ H
|
|
|
|
theorem exists_gt (a : A) : ∃ x, x > a :=
|
|
have H : a + 1 > a, from lt_add_of_le_of_pos (le.refl _) zero_lt_one,
|
|
exists.intro _ H
|
|
|
|
-- the following theorems amount to four iffs, for <, ≤, ≥, >.
|
|
|
|
theorem mul_le_of_le_div (Hc : 0 < c) (H : a ≤ b / c) : a * c ≤ b :=
|
|
!div_mul_cancel (ne.symm (ne_of_lt Hc)) ▸ mul_le_mul_of_nonneg_right H (le_of_lt Hc)
|
|
|
|
theorem le_div_of_mul_le (Hc : 0 < c) (H : a * c ≤ b) : a ≤ b / c :=
|
|
calc
|
|
a = a * c * (1 / c) : !mul_mul_div (ne.symm (ne_of_lt Hc))
|
|
... ≤ b * (1 / c) : mul_le_mul_of_nonneg_right H (le_of_lt (one_div_pos_of_pos Hc))
|
|
... = b / c : div_eq_mul_one_div
|
|
|
|
theorem mul_lt_of_lt_div (Hc : 0 < c) (H : a < b / c) : a * c < b :=
|
|
!div_mul_cancel (ne.symm (ne_of_lt Hc)) ▸ mul_lt_mul_of_pos_right H Hc
|
|
|
|
theorem lt_div_of_mul_lt (Hc : 0 < c) (H : a * c < b) : a < b / c :=
|
|
calc
|
|
a = a * c * (1 / c) : !mul_mul_div (ne.symm (ne_of_lt Hc))
|
|
... < b * (1 / c) : mul_lt_mul_of_pos_right H (one_div_pos_of_pos Hc)
|
|
... = b / c : div_eq_mul_one_div
|
|
|
|
theorem mul_le_of_div_le_of_neg (Hc : c < 0) (H : b / c ≤ a) : a * c ≤ b :=
|
|
!div_mul_cancel (ne_of_lt Hc) ▸ mul_le_mul_of_nonpos_right H (le_of_lt Hc)
|
|
|
|
theorem div_le_of_mul_le_of_neg (Hc : c < 0) (H : a * c ≤ b) : b / c ≤ a :=
|
|
calc
|
|
a = a * c * (1 / c) : !mul_mul_div (ne_of_lt Hc)
|
|
... ≥ b * (1 / c) : mul_le_mul_of_nonpos_right H (le_of_lt (one_div_neg_of_neg Hc))
|
|
... = b / c : div_eq_mul_one_div
|
|
|
|
theorem mul_lt_of_gt_div_of_neg (Hc : c < 0) (H : a > b / c) : a * c < b :=
|
|
!div_mul_cancel (ne_of_lt Hc) ▸ mul_lt_mul_of_neg_right H Hc
|
|
|
|
theorem div_lt_of_mul_gt_of_neg (Hc : c < 0) (H : a * c < b) : b / c < a :=
|
|
calc
|
|
a = a * c * (1 / c) : !mul_mul_div (ne_of_lt Hc)
|
|
... > b * (1 / c) : mul_lt_mul_of_neg_right H (one_div_neg_of_neg Hc)
|
|
... = b / c : div_eq_mul_one_div
|
|
|
|
theorem div_le_of_le_mul (Hb : b > 0) (H : a ≤ b * c) : a / b ≤ c :=
|
|
calc
|
|
a / b = a * (1 / b) : div_eq_mul_one_div
|
|
... ≤ (b * c) * (1 / b) : mul_le_mul_of_nonneg_right H (le_of_lt (one_div_pos_of_pos Hb))
|
|
... = (b * c) / b : div_eq_mul_one_div
|
|
... = c : mul_div_cancel_left (ne.symm (ne_of_lt Hb))
|
|
|
|
theorem le_mul_of_div_le (Hc : c > 0) (H : a / c ≤ b) : a ≤ b * c :=
|
|
calc
|
|
a = a / c * c : !div_mul_cancel (ne.symm (ne_of_lt Hc))
|
|
... ≤ b * c : mul_le_mul_of_nonneg_right H (le_of_lt Hc)
|
|
|
|
-- following these in the isabelle file, there are 8 biconditionals for the above with - signs
|
|
-- skipping for now
|
|
|
|
theorem mul_sub_mul_div_mul_neg (Hc : c ≠ 0) (Hd : d ≠ 0) (H : a / c < b / d) :
|
|
(a * d - b * c) / (c * d) < 0 :=
|
|
have H1 : a / c - b / d < 0, from calc
|
|
a / c - b / d < b / d - b / d : sub_lt_sub_right H
|
|
... = 0 : sub_self,
|
|
calc
|
|
0 > a / c - b / d : H1
|
|
... = (a * d - c * b) / (c * d) : !div_sub_div Hc Hd
|
|
... = (a * d - b * c) / (c * d) : mul.comm
|
|
|
|
theorem mul_sub_mul_div_mul_nonpos (Hc : c ≠ 0) (Hd : d ≠ 0) (H : a / c ≤ b / d) :
|
|
(a * d - b * c) / (c * d) ≤ 0 :=
|
|
have H1 : a / c - b / d ≤ 0, from calc
|
|
a / c - b / d ≤ b / d - b / d : sub_le_sub_right H
|
|
... = 0 : sub_self,
|
|
calc
|
|
0 ≥ a / c - b / d : H1
|
|
... = (a * d - c * b) / (c * d) : !div_sub_div Hc Hd
|
|
... = (a * d - b * c) / (c * d) : mul.comm
|
|
|
|
theorem div_lt_div_of_mul_sub_mul_div_neg (Hc : c ≠ 0) (Hd : d ≠ 0)
|
|
(H : (a * d - b * c) / (c * d) < 0) : a / c < b / d :=
|
|
assert H1 : (a * d - c * b) / (c * d) < 0, by rewrite [mul.comm c b]; exact H,
|
|
assert H2 : a / c - b / d < 0, by rewrite [!div_sub_div Hc Hd]; exact H1,
|
|
assert H3 : a / c - b / d + b / d < 0 + b / d, from add_lt_add_right H2 _,
|
|
begin rewrite [zero_add at H3, sub_eq_add_neg at H3, neg_add_cancel_right at H3], exact H3 end
|
|
|
|
theorem div_le_div_of_mul_sub_mul_div_nonpos (Hc : c ≠ 0) (Hd : d ≠ 0)
|
|
(H : (a * d - b * c) / (c * d) ≤ 0) : a / c ≤ b / d :=
|
|
assert H1 : (a * d - c * b) / (c * d) ≤ 0, by rewrite [mul.comm c b]; exact H,
|
|
assert H2 : a / c - b / d ≤ 0, by rewrite [!div_sub_div Hc Hd]; exact H1,
|
|
assert H3 : a / c - b / d + b / d ≤ 0 + b / d, from add_le_add_right H2 _,
|
|
begin rewrite [zero_add at H3, sub_eq_add_neg at H3, neg_add_cancel_right at H3], exact H3 end
|
|
|
|
theorem div_pos_of_pos_of_pos (Ha : 0 < a) (Hb : 0 < b) : 0 < a / b :=
|
|
begin
|
|
rewrite div_eq_mul_one_div,
|
|
apply mul_pos,
|
|
exact Ha,
|
|
apply one_div_pos_of_pos,
|
|
exact Hb
|
|
end
|
|
|
|
theorem div_nonneg_of_nonneg_of_pos (Ha : 0 ≤ a) (Hb : 0 < b) : 0 ≤ a / b :=
|
|
begin
|
|
rewrite div_eq_mul_one_div,
|
|
apply mul_nonneg,
|
|
exact Ha,
|
|
apply le_of_lt,
|
|
apply one_div_pos_of_pos,
|
|
exact Hb
|
|
end
|
|
|
|
theorem div_neg_of_neg_of_pos (Ha : a < 0) (Hb : 0 < b) : a / b < 0:=
|
|
begin
|
|
rewrite div_eq_mul_one_div,
|
|
apply mul_neg_of_neg_of_pos,
|
|
exact Ha,
|
|
apply one_div_pos_of_pos,
|
|
exact Hb
|
|
end
|
|
|
|
theorem div_nonpos_of_nonpos_of_pos (Ha : a ≤ 0) (Hb : 0 < b) : a / b ≤ 0 :=
|
|
begin
|
|
rewrite div_eq_mul_one_div,
|
|
apply mul_nonpos_of_nonpos_of_nonneg,
|
|
exact Ha,
|
|
apply le_of_lt,
|
|
apply one_div_pos_of_pos,
|
|
exact Hb
|
|
end
|
|
|
|
theorem div_neg_of_pos_of_neg (Ha : 0 < a) (Hb : b < 0) : a / b < 0 :=
|
|
begin
|
|
rewrite div_eq_mul_one_div,
|
|
apply mul_neg_of_pos_of_neg,
|
|
exact Ha,
|
|
apply one_div_neg_of_neg,
|
|
exact Hb
|
|
end
|
|
|
|
theorem div_nonpos_of_nonneg_of_neg (Ha : 0 ≤ a) (Hb : b < 0) : a / b ≤ 0 :=
|
|
begin
|
|
rewrite div_eq_mul_one_div,
|
|
apply mul_nonpos_of_nonneg_of_nonpos,
|
|
exact Ha,
|
|
apply le_of_lt,
|
|
apply one_div_neg_of_neg,
|
|
exact Hb
|
|
end
|
|
|
|
theorem div_pos_of_neg_of_neg (Ha : a < 0) (Hb : b < 0) : 0 < a / b :=
|
|
begin
|
|
rewrite div_eq_mul_one_div,
|
|
apply mul_pos_of_neg_of_neg,
|
|
exact Ha,
|
|
apply one_div_neg_of_neg,
|
|
exact Hb
|
|
end
|
|
|
|
theorem div_nonneg_of_nonpos_of_neg (Ha : a ≤ 0) (Hb : b < 0) : 0 ≤ a / b :=
|
|
begin
|
|
rewrite div_eq_mul_one_div,
|
|
apply mul_nonneg_of_nonpos_of_nonpos,
|
|
exact Ha,
|
|
apply le_of_lt,
|
|
apply one_div_neg_of_neg,
|
|
exact Hb
|
|
end
|
|
|
|
theorem div_lt_div_of_lt_of_pos (H : a < b) (Hc : 0 < c) : a / c < b / c :=
|
|
begin
|
|
rewrite [{a/c}div_eq_mul_one_div, {b/c}div_eq_mul_one_div],
|
|
exact mul_lt_mul_of_pos_right H (one_div_pos_of_pos Hc)
|
|
end
|
|
|
|
theorem div_le_div_of_le_of_pos (H : a ≤ b) (Hc : 0 < c) : a / c ≤ b / c :=
|
|
begin
|
|
rewrite [{a/c}div_eq_mul_one_div, {b/c}div_eq_mul_one_div],
|
|
exact mul_le_mul_of_nonneg_right H (le_of_lt (one_div_pos_of_pos Hc))
|
|
end
|
|
|
|
theorem div_lt_div_of_lt_of_neg (H : b < a) (Hc : c < 0) : a / c < b / c :=
|
|
begin
|
|
rewrite [{a/c}div_eq_mul_one_div, {b/c}div_eq_mul_one_div],
|
|
exact mul_lt_mul_of_neg_right H (one_div_neg_of_neg Hc)
|
|
end
|
|
|
|
theorem div_le_div_of_le_of_neg (H : b ≤ a) (Hc : c < 0) : a / c ≤ b / c :=
|
|
begin
|
|
rewrite [{a/c}div_eq_mul_one_div, {b/c}div_eq_mul_one_div],
|
|
exact mul_le_mul_of_nonpos_right H (le_of_lt (one_div_neg_of_neg Hc))
|
|
end
|
|
|
|
theorem two_pos : (1 : A) + 1 > 0 :=
|
|
add_pos zero_lt_one zero_lt_one
|
|
|
|
theorem two_ne_zero : (1 : A) + 1 ≠ 0 :=
|
|
ne.symm (ne_of_lt two_pos)
|
|
|
|
notation 2 := 1 + 1
|
|
|
|
theorem add_halves (a : A) : a / 2 + a / 2 = a :=
|
|
calc
|
|
a / 2 + a / 2 = (a + a) / 2 : by rewrite div_add_div_same
|
|
... = (a * 1 + a * 1) / 2 : by rewrite mul_one
|
|
... = (a * 2) / 2 : by rewrite left_distrib
|
|
... = a : by rewrite [@mul_div_cancel A _ _ _ two_ne_zero]
|
|
|
|
theorem sub_self_div_two (a : A) : a - a / 2 = a / 2 :=
|
|
by rewrite [-{a}add_halves at {1}, add_sub_cancel]
|
|
|
|
theorem add_midpoint {a b : A} (H : a < b) : a + (b - a) / 2 < b :=
|
|
begin
|
|
rewrite [-div_sub_div_same, sub_eq_add_neg, {b / 2 + _}add.comm, -add.assoc, -sub_eq_add_neg],
|
|
apply add_lt_of_lt_sub_right,
|
|
rewrite *sub_self_div_two,
|
|
apply div_lt_div_of_lt_of_pos H two_pos
|
|
end
|
|
|
|
theorem div_two_sub_self (a : A) : a / 2 - a = - (a / 2) :=
|
|
by rewrite [-{a}add_halves at {2}, sub_add_eq_sub_sub, sub_self, zero_sub]
|
|
|
|
theorem add_self_div_two (a : A) : (a + a) / 2 = a :=
|
|
symm (iff.mpr (!eq_div_iff_mul_eq (ne_of_gt (add_pos zero_lt_one zero_lt_one)))
|
|
(by rewrite [left_distrib, *mul_one]))
|
|
|
|
theorem two_ge_one : (2 : A) ≥ 1 :=
|
|
by rewrite -(add_zero 1) at {3}; apply add_le_add_left; apply zero_le_one
|
|
|
|
theorem mul_le_mul_of_mul_div_le (H : a * (b / c) ≤ d) (Hc : c > 0) : b * a ≤ d * c :=
|
|
begin
|
|
rewrite [-mul_div_assoc at H, mul.comm b],
|
|
apply le_mul_of_div_le Hc H
|
|
end
|
|
|
|
theorem div_two_lt_of_pos (H : a > 0) : a / (1 + 1) < a :=
|
|
have Ha : a / (1 + 1) > 0, from div_pos_of_pos_of_pos H (add_pos zero_lt_one zero_lt_one),
|
|
calc
|
|
a / (1 + 1) < a / (1 + 1) + a / (1 + 1) : lt_add_of_pos_left Ha
|
|
... = a : add_halves
|
|
|
|
|
|
theorem div_mul_le_div_mul_of_div_le_div_pos {e : A} (Hb : b ≠ 0) (Hd : d ≠ 0) (H : a / b ≤ c / d)
|
|
(He : e > 0) : a / (b * e) ≤ c / (d * e) :=
|
|
begin
|
|
rewrite [!field.div_mul_eq_div_mul_one_div Hb (ne_of_gt He),
|
|
!field.div_mul_eq_div_mul_one_div Hd (ne_of_gt He)],
|
|
apply mul_le_mul_of_nonneg_right H,
|
|
apply le_of_lt,
|
|
apply one_div_pos_of_pos He
|
|
end
|
|
|
|
theorem exists_add_lt_and_pos_of_lt (H : b < a) : ∃ c : A, b + c < a ∧ c > 0 :=
|
|
exists.intro ((a - b) / (1 + 1))
|
|
(and.intro (assert H2 : a + a > (b + b) + (a - b), from calc
|
|
a + a > b + a : add_lt_add_right H
|
|
... = b + a + b - b : add_sub_cancel
|
|
... = b + b + a - b : add.right_comm
|
|
... = (b + b) + (a - b) : add_sub,
|
|
assert H3 : (a + a) / (1 + 1) > ((b + b) + (a - b)) / (1 + 1),
|
|
from div_lt_div_of_lt_of_pos H2 two_pos,
|
|
by rewrite [add_self_div_two at H3, -div_add_div_same at H3, add_self_div_two at H3];
|
|
exact H3)
|
|
(div_pos_of_pos_of_pos (iff.mpr !sub_pos_iff_lt H) two_pos))
|
|
|
|
theorem ge_of_forall_ge_sub {a b : A} (H : ∀ ε : A, ε > 0 → a ≥ b - ε) : a ≥ b :=
|
|
begin
|
|
apply le_of_not_gt,
|
|
intro Hb,
|
|
cases exists_add_lt_and_pos_of_lt Hb with [c, Hc],
|
|
let Hc' := H c (and.right Hc),
|
|
apply (not_le_of_gt (and.left Hc)) (iff.mpr !le_add_iff_sub_right_le Hc')
|
|
end
|
|
|
|
end linear_ordered_field
|
|
|
|
structure discrete_linear_ordered_field [class] (A : Type) extends linear_ordered_field A,
|
|
decidable_linear_ordered_comm_ring A :=
|
|
(inv_zero : inv zero = zero)
|
|
|
|
section discrete_linear_ordered_field
|
|
|
|
variable {A : Type}
|
|
variables [s : discrete_linear_ordered_field A] {a b c : A}
|
|
include s
|
|
|
|
definition dec_eq_of_dec_lt : ∀ x y : A, decidable (x = y) :=
|
|
take x y,
|
|
decidable.by_cases
|
|
(assume H : x < y, decidable.inr (ne_of_lt H))
|
|
(assume H : ¬ x < y,
|
|
decidable.by_cases
|
|
(assume H' : y < x, decidable.inr (ne.symm (ne_of_lt H')))
|
|
(assume H' : ¬ y < x,
|
|
decidable.inl (le.antisymm (le_of_not_gt H') (le_of_not_gt H))))
|
|
|
|
definition discrete_linear_ordered_field.to_discrete_field [trans-instance] [reducible] [coercion]
|
|
: discrete_field A :=
|
|
⦃ discrete_field, s, has_decidable_eq := dec_eq_of_dec_lt⦄
|
|
|
|
theorem pos_of_one_div_pos (H : 0 < 1 / a) : 0 < a :=
|
|
have H1 : 0 < 1 / (1 / a), from one_div_pos_of_pos H,
|
|
have H2 : 1 / a ≠ 0, from
|
|
(assume H3 : 1 / a = 0,
|
|
have H4 : 1 / (1 / a) = 0, from H3⁻¹ ▸ !div_zero,
|
|
absurd H4 (ne.symm (ne_of_lt H1))),
|
|
(division_ring.one_div_one_div (ne_zero_of_one_div_ne_zero H2)) ▸ H1
|
|
|
|
theorem neg_of_one_div_neg (H : 1 / a < 0) : a < 0 :=
|
|
have H1 : 0 < - (1 / a), from neg_pos_of_neg H,
|
|
have Ha : a ≠ 0, from ne_zero_of_one_div_ne_zero (ne_of_lt H),
|
|
have H2 : 0 < 1 / (-a), from (division_ring.one_div_neg_eq_neg_one_div Ha)⁻¹ ▸ H1,
|
|
have H3 : 0 < -a, from pos_of_one_div_pos H2,
|
|
neg_of_neg_pos H3
|
|
|
|
theorem le_of_one_div_le_one_div (H : 0 < a) (Hl : 1 / a ≤ 1 / b) : b ≤ a :=
|
|
have Hb : 0 < b, from pos_of_one_div_pos (calc
|
|
0 < 1 / a : one_div_pos_of_pos H
|
|
... ≤ 1 / b : Hl),
|
|
have H' : 1 ≤ a / b, from (calc
|
|
1 = a / a : div_self (ne.symm (ne_of_lt H))
|
|
... = a * (1 / a) : div_eq_mul_one_div
|
|
... ≤ a * (1 / b) : mul_le_mul_of_nonneg_left Hl (le_of_lt H)
|
|
... = a / b : div_eq_mul_one_div
|
|
), le_of_one_le_div Hb H'
|
|
|
|
theorem le_of_one_div_le_one_div_of_neg (H : b < 0) (Hl : 1 / a ≤ 1 / b) : b ≤ a :=
|
|
assert Ha : a ≠ 0, from ne_of_lt (neg_of_one_div_neg (calc
|
|
1 / a ≤ 1 / b : Hl
|
|
... < 0 : one_div_neg_of_neg H)),
|
|
have H' : -b > 0, from neg_pos_of_neg H,
|
|
have Hl' : - (1 / b) ≤ - (1 / a), from neg_le_neg Hl,
|
|
have Hl'' : 1 / - b ≤ 1 / - a, from calc
|
|
1 / -b = - (1 / b) : by rewrite [division_ring.one_div_neg_eq_neg_one_div (ne_of_lt H)]
|
|
... ≤ - (1 / a) : Hl'
|
|
... = 1 / -a : by rewrite [division_ring.one_div_neg_eq_neg_one_div Ha],
|
|
le_of_neg_le_neg (le_of_one_div_le_one_div H' Hl'')
|
|
|
|
theorem lt_of_one_div_lt_one_div (H : 0 < a) (Hl : 1 / a < 1 / b) : b < a :=
|
|
have Hb : 0 < b, from pos_of_one_div_pos (calc
|
|
0 < 1 / a : one_div_pos_of_pos H
|
|
... < 1 / b : Hl),
|
|
have H : 1 < a / b, from (calc
|
|
1 = a / a : div_self (ne.symm (ne_of_lt H))
|
|
... = a * (1 / a) : div_eq_mul_one_div
|
|
... < a * (1 / b) : mul_lt_mul_of_pos_left Hl H
|
|
... = a / b : div_eq_mul_one_div),
|
|
lt_of_one_lt_div Hb H
|
|
|
|
theorem lt_of_one_div_lt_one_div_of_neg (H : b < 0) (Hl : 1 / a < 1 / b) : b < a :=
|
|
have H1 : b ≤ a, from le_of_one_div_le_one_div_of_neg H (le_of_lt Hl),
|
|
have Hn : b ≠ a, from
|
|
(assume Hn' : b = a,
|
|
have Hl' : 1 / a = 1 / b, from Hn' ▸ refl _,
|
|
absurd Hl' (ne_of_lt Hl)),
|
|
lt_of_le_of_ne H1 Hn
|
|
|
|
theorem one_div_lt_one_div_of_lt (Ha : 0 < a) (H : a < b) : 1 / b < 1 / a :=
|
|
lt_of_not_ge
|
|
(assume H',
|
|
absurd H (not_lt_of_ge (le_of_one_div_le_one_div Ha H')))
|
|
|
|
theorem one_div_le_one_div_of_le (Ha : 0 < a) (H : a ≤ b) : 1 / b ≤ 1 / a :=
|
|
le_of_not_gt
|
|
(assume H',
|
|
absurd H (not_le_of_gt (lt_of_one_div_lt_one_div Ha H')))
|
|
|
|
theorem one_div_lt_one_div_of_lt_of_neg (Hb : b < 0) (H : a < b) : 1 / b < 1 / a :=
|
|
lt_of_not_ge
|
|
(assume H',
|
|
absurd H (not_lt_of_ge (le_of_one_div_le_one_div_of_neg Hb H')))
|
|
|
|
theorem one_div_le_one_div_of_le_of_neg (Hb : b < 0) (H : a ≤ b) : 1 / b ≤ 1 / a :=
|
|
le_of_not_gt
|
|
(assume H',
|
|
absurd H (not_le_of_gt (lt_of_one_div_lt_one_div_of_neg Hb H')))
|
|
|
|
theorem one_lt_one_div (H1 : 0 < a) (H2 : a < 1) : 1 < 1 / a :=
|
|
one_div_one ▸ one_div_lt_one_div_of_lt H1 H2
|
|
|
|
theorem one_le_one_div (H1 : 0 < a) (H2 : a ≤ 1) : 1 ≤ 1 / a :=
|
|
one_div_one ▸ one_div_le_one_div_of_le H1 H2
|
|
|
|
theorem one_div_lt_neg_one (H1 : a < 0) (H2 : -1 < a) : 1 / a < -1 :=
|
|
one_div_neg_one_eq_neg_one ▸ one_div_lt_one_div_of_lt_of_neg H1 H2
|
|
|
|
theorem one_div_le_neg_one (H1 : a < 0) (H2 : -1 ≤ a) : 1 / a ≤ -1 :=
|
|
one_div_neg_one_eq_neg_one ▸ one_div_le_one_div_of_le_of_neg H1 H2
|
|
|
|
theorem div_lt_div_of_pos_of_lt_of_pos (Hb : 0 < b) (H : b < a) (Hc : 0 < c) : c / a < c / b :=
|
|
begin
|
|
apply iff.mp !sub_neg_iff_lt,
|
|
rewrite [div_eq_mul_one_div, {c / b}div_eq_mul_one_div, -mul_sub_left_distrib],
|
|
apply mul_neg_of_pos_of_neg,
|
|
exact Hc,
|
|
apply iff.mpr !sub_neg_iff_lt,
|
|
apply one_div_lt_one_div_of_lt,
|
|
repeat assumption
|
|
end
|
|
|
|
theorem div_mul_le_div_mul_of_div_le_div_pos' {d e : A} (H : a / b ≤ c / d)
|
|
(He : e > 0) : a / (b * e) ≤ c / (d * e) :=
|
|
begin
|
|
rewrite [2 div_mul_eq_div_mul_one_div],
|
|
apply mul_le_mul_of_nonneg_right H,
|
|
apply le_of_lt,
|
|
apply one_div_pos_of_pos He
|
|
end
|
|
|
|
theorem abs_one_div (a : A) : abs (1 / a) = 1 / abs a :=
|
|
if H : a > 0 then
|
|
by rewrite [abs_of_pos H, abs_of_pos (one_div_pos_of_pos H)]
|
|
else
|
|
(if H' : a < 0 then
|
|
by rewrite [abs_of_neg H', abs_of_neg (one_div_neg_of_neg H'),
|
|
-(division_ring.one_div_neg_eq_neg_one_div (ne_of_lt H'))]
|
|
else
|
|
assert Heq : a = 0, from eq_of_le_of_ge (le_of_not_gt H) (le_of_not_gt H'),
|
|
by rewrite [Heq, div_zero, *abs_zero, div_zero])
|
|
|
|
theorem sign_eq_div_abs (a : A) : sign a = a / (abs a) :=
|
|
decidable.by_cases
|
|
(suppose a = 0, by subst a; rewrite [zero_div, sign_zero])
|
|
(suppose a ≠ 0,
|
|
have abs a ≠ 0, from assume H, this (eq_zero_of_abs_eq_zero H),
|
|
!eq_div_of_mul_eq this !eq_sign_mul_abs⁻¹)
|
|
|
|
end discrete_linear_ordered_field
|
|
end algebra
|