lean2/hott/types/W.hlean
2014-12-16 13:11:32 -08:00

153 lines
5.1 KiB
Text

/-
Copyright (c) 2014 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Floris van Doorn
Theorems about W-types (well-founded trees)
-/
import .sigma .pi
open path sigma sigma.ops equiv is_equiv
inductive Wtype {A : Type} (B : A → Type) :=
sup : Π(a : A), (B a → Wtype B) → Wtype B
namespace Wtype
notation `W` binders `,` r:(scoped B, Wtype B) := r
universe variables u v
variables {A A' : Type.{u}} {B B' : A → Type.{v}} {C : Π(a : A), B a → Type}
{a a' : A} {f : B a → W a, B a} {f' : B a' → W a, B a} {w w' : W(a : A), B a}
definition pr1 (w : W(a : A), B a) : A :=
Wtype.rec_on w (λa f IH, a)
definition pr2 (w : W(a : A), B a) : B (pr1 w) → W(a : A), B a :=
Wtype.rec_on w (λa f IH, f)
namespace ops
postfix `.1`:(max+1) := Wtype.pr1
postfix `.2`:(max+1) := Wtype.pr2
notation `⟨` a `,` f `⟩`:0 := Wtype.sup a f --input ⟨ ⟩ as \< \>
end ops
open ops
protected definition eta (w : W a, B a) : ⟨w.1 , w.2⟩ ≈ w :=
cases_on w (λa f, idp)
definition path_W_sup (p : a ≈ a') (q : p ▹ f ≈ f') : ⟨a, f⟩ ≈ ⟨a', f'⟩ :=
path.rec_on p (λf' q, path.rec_on q idp) f' q
definition path_W (p : w.1 ≈ w'.1) (q : p ▹ w.2 ≈ w'.2) : w ≈ w' :=
cases_on w
(λw1 w2, cases_on w' (λ w1' w2', path_W_sup))
p q
definition pr1_path (p : w ≈ w') : w.1 ≈ w'.1 :=
path.rec_on p idp
definition pr2_path (p : w ≈ w') : pr1_path p ▹ w.2 ≈ w'.2 :=
path.rec_on p idp
namespace ops
postfix `..1`:(max+1) := pr1_path
postfix `..2`:(max+1) := pr2_path
end ops
open ops
definition sup_path_W (p : w.1 ≈ w'.1) (q : p ▹ w.2 ≈ w'.2)
: dpair (path_W p q)..1 (path_W p q)..2 ≈ dpair p q :=
begin
reverts (p, q),
apply (cases_on w), intros (w1, w2),
apply (cases_on w'), intros (w1', w2', p), generalize w2', --change to revert
apply (path.rec_on p), intros (w2', q),
apply (path.rec_on q), apply idp
end
definition pr1_path_W (p : w.1 ≈ w'.1) (q : p ▹ w.2 ≈ w'.2) : (path_W p q)..1 ≈ p :=
(!sup_path_W)..1
definition pr2_path_W (p : w.1 ≈ w'.1) (q : p ▹ w.2 ≈ w'.2)
: pr1_path_W p q ▹ (path_W p q)..2 ≈ q :=
(!sup_path_W)..2
definition eta_path_W (p : w ≈ w') : path_W (p..1) (p..2) ≈ p :=
begin
apply (path.rec_on p),
apply (cases_on w), intros (w1, w2),
apply idp
end
definition transport_pr1_path_W {B' : A → Type} (p : w.1 ≈ w'.1) (q : p ▹ w.2 ≈ w'.2)
: transport (λx, B' x.1) (path_W p q) ≈ transport B' p :=
begin
reverts (p, q),
apply (cases_on w), intros (w1, w2),
apply (cases_on w'), intros (w1', w2', p), generalize w2',
apply (path.rec_on p), intros (w2', q),
apply (path.rec_on q), apply idp
end
definition path_W_uncurried (pq : Σ(p : w.1 ≈ w'.1), p ▹ w.2 ≈ w'.2) : w ≈ w' :=
destruct pq path_W
definition sup_path_W_uncurried (pq : Σ(p : w.1 ≈ w'.1), p ▹ w.2 ≈ w'.2)
: dpair (path_W_uncurried pq)..1 (path_W_uncurried pq)..2 ≈ pq :=
destruct pq sup_path_W
definition pr1_path_W_uncurried (pq : Σ(p : w.1 ≈ w'.1), p ▹ w.2 ≈ w'.2)
: (path_W_uncurried pq)..1 ≈ pq.1 :=
(!sup_path_W_uncurried)..1
definition pr2_path_W_uncurried (pq : Σ(p : w.1 ≈ w'.1), p ▹ w.2 ≈ w'.2)
: (pr1_path_W_uncurried pq) ▹ (path_W_uncurried pq)..2 ≈ pq.2 :=
(!sup_path_W_uncurried)..2
definition eta_path_W_uncurried (p : w ≈ w') : path_W_uncurried (dpair p..1 p..2) ≈ p :=
!eta_path_W
definition transport_pr1_path_W_uncurried {B' : A → Type} (pq : Σ(p : w.1 ≈ w'.1), p ▹ w.2 ≈ w'.2)
: transport (λx, B' x.1) (@path_W_uncurried A B w w' pq) ≈ transport B' pq.1 :=
destruct pq transport_pr1_path_W
definition isequiv_path_W /-[instance]-/ (w w' : W a, B a)
: is_equiv (@path_W_uncurried A B w w') :=
adjointify path_W_uncurried
(λp, dpair (p..1) (p..2))
eta_path_W_uncurried
sup_path_W_uncurried
definition equiv_path_W (w w' : W a, B a) : (Σ(p : w.1 ≈ w'.1), p ▹ w.2 ≈ w'.2) ≃ (w ≈ w') :=
equiv.mk path_W_uncurried !isequiv_path_W
definition double_induction_on {P : (W a, B a) → (W a, B a) → Type} (w w' : W a, B a)
(H : ∀ (a a' : A) (f : B a → W a, B a) (f' : B a' → W a, B a),
(∀ (b : B a) (b' : B a'), P (f b) (f' b')) → P (sup a f) (sup a' f')) : P w w' :=
begin
revert w',
apply (rec_on w), intros (a, f, IH, w'),
apply (cases_on w'), intros (a', f'),
apply H, intros (b, b'),
apply IH
end
/- truncatedness -/
open truncation
definition trunc_W [FUN : funext.{v (max 1 u v)}] (n : trunc_index) [HA : is_trunc (n.+1) A]
: is_trunc (n.+1) (W a, B a) :=
begin
fapply is_trunc_succ, intros (w, w'),
apply (double_induction_on w w'), intros (a, a', f, f', IH),
fapply trunc_equiv',
apply equiv_path_W,
apply trunc_sigma,
fapply (succ_is_trunc n),
intro p, revert IH, generalize f', --change to revert after simpl
apply (path.rec_on p), intros (f', IH),
apply pi.trunc_path_pi, intro b,
apply IH
end
end Wtype