1008 lines
35 KiB
Text
1008 lines
35 KiB
Text
/-
|
||
Copyright (c) 2014 Jeremy Avigad. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Author: Jeremy Avigad, Leonardo de Moura
|
||
-/
|
||
import logic.connectives logic.identities algebra.binary
|
||
open eq.ops binary function
|
||
|
||
definition set (X : Type) := X → Prop
|
||
|
||
namespace set
|
||
|
||
variable {X : Type}
|
||
|
||
/- membership and subset -/
|
||
|
||
definition mem (x : X) (a : set X) := a x
|
||
infix ∈ := mem
|
||
notation a ∉ b := ¬ mem a b
|
||
|
||
theorem ext {a b : set X} (H : ∀x, x ∈ a ↔ x ∈ b) : a = b :=
|
||
funext (take x, propext (H x))
|
||
|
||
definition subset (a b : set X) := ∀⦃x⦄, x ∈ a → x ∈ b
|
||
infix ⊆ := subset
|
||
|
||
definition superset (s t : set X) : Prop := t ⊆ s
|
||
infix ⊇ := superset
|
||
|
||
theorem subset.refl (a : set X) : a ⊆ a := take x, assume H, H
|
||
|
||
theorem subset.trans {a b c : set X} (subab : a ⊆ b) (subbc : b ⊆ c) : a ⊆ c :=
|
||
take x, assume ax, subbc (subab ax)
|
||
|
||
theorem subset.antisymm {a b : set X} (h₁ : a ⊆ b) (h₂ : b ⊆ a) : a = b :=
|
||
ext (λ x, iff.intro (λ ina, h₁ ina) (λ inb, h₂ inb))
|
||
|
||
-- an alterantive name
|
||
theorem eq_of_subset_of_subset {a b : set X} (h₁ : a ⊆ b) (h₂ : b ⊆ a) : a = b :=
|
||
subset.antisymm h₁ h₂
|
||
|
||
theorem mem_of_subset_of_mem {s₁ s₂ : set X} {a : X} : s₁ ⊆ s₂ → a ∈ s₁ → a ∈ s₂ :=
|
||
assume h₁ h₂, h₁ _ h₂
|
||
|
||
/- strict subset -/
|
||
|
||
definition strict_subset (a b : set X) := a ⊆ b ∧ a ≠ b
|
||
infix ` ⊂ `:50 := strict_subset
|
||
|
||
theorem strict_subset.irrefl (a : set X) : ¬ a ⊂ a :=
|
||
assume h, absurd rfl (and.elim_right h)
|
||
|
||
/- bounded quantification -/
|
||
|
||
abbreviation bounded_forall (a : set X) (P : X → Prop) := ∀⦃x⦄, x ∈ a → P x
|
||
notation `forallb` binders ` ∈ ` a `, ` r:(scoped:1 P, P) := bounded_forall a r
|
||
notation `∀₀` binders ` ∈ ` a `, ` r:(scoped:1 P, P) := bounded_forall a r
|
||
|
||
abbreviation bounded_exists (a : set X) (P : X → Prop) := ∃⦃x⦄, x ∈ a ∧ P x
|
||
notation `existsb` binders ` ∈ ` a `, ` r:(scoped:1 P, P) := bounded_exists a r
|
||
notation `∃₀` binders ` ∈ ` a `, ` r:(scoped:1 P, P) := bounded_exists a r
|
||
|
||
theorem bounded_exists.intro {P : X → Prop} {s : set X} {x : X} (xs : x ∈ s) (Px : P x) :
|
||
∃₀ x ∈ s, P x :=
|
||
exists.intro x (and.intro xs Px)
|
||
|
||
lemma bounded_forall_congr {A : Type} {S : set A} {P Q : A → Prop} (H : ∀₀ x ∈ S, P x ↔ Q x) :
|
||
(∀₀ x ∈ S, P x) = (∀₀ x ∈ S, Q x) :=
|
||
begin
|
||
apply propext,
|
||
apply forall_congr,
|
||
intros x,
|
||
apply imp_congr_right,
|
||
apply H
|
||
end
|
||
|
||
lemma bounded_exists_congr {A : Type} {S : set A} {P Q : A → Prop} (H : ∀₀ x ∈ S, P x ↔ Q x) :
|
||
(∃₀ x ∈ S, P x) = (∃₀ x ∈ S, Q x) :=
|
||
begin
|
||
apply propext,
|
||
apply exists_congr,
|
||
intros x,
|
||
apply and_congr_right,
|
||
apply H
|
||
end
|
||
|
||
section
|
||
open classical
|
||
|
||
lemma not_bounded_exists {A : Type} {S : set A} {P : A → Prop} :
|
||
(¬ (∃₀ x ∈ S, P x)) = (∀₀ x ∈ S, ¬ P x) :=
|
||
begin
|
||
rewrite forall_iff_not_exists,
|
||
apply propext,
|
||
apply forall_congr,
|
||
intro x,
|
||
rewrite not_and_iff_not_or_not,
|
||
symmetry,
|
||
apply imp_iff_not_or
|
||
end
|
||
|
||
lemma not_bounded_forall {A : Type} {S : set A} {P : A → Prop} :
|
||
(¬ (∀₀ x ∈ S, P x)) = (∃₀ x ∈ S, ¬ P x) :=
|
||
calc (¬ (∀₀ x ∈ S, P x)) = ¬ ¬ (∃₀ x ∈ S, ¬ P x) :
|
||
begin
|
||
rewrite not_bounded_exists,
|
||
apply (congr_arg not),
|
||
apply bounded_forall_congr,
|
||
intros x H,
|
||
rewrite not_not_iff
|
||
end
|
||
... = (∃₀ x ∈ S, ¬ P x) : by (rewrite not_not_iff)
|
||
|
||
end
|
||
|
||
/- empty set -/
|
||
|
||
definition empty : set X := λx, false
|
||
notation `∅` := empty
|
||
|
||
theorem not_mem_empty (x : X) : ¬ (x ∈ ∅) :=
|
||
assume H : x ∈ ∅, H
|
||
|
||
theorem mem_empty_eq (x : X) : x ∈ ∅ = false := rfl
|
||
|
||
theorem eq_empty_of_forall_not_mem {s : set X} (H : ∀ x, x ∉ s) : s = ∅ :=
|
||
ext (take x, iff.intro
|
||
(assume xs, absurd xs (H x))
|
||
(assume xe, absurd xe !not_mem_empty))
|
||
|
||
theorem ne_empty_of_mem {s : set X} {x : X} (H : x ∈ s) : s ≠ ∅ :=
|
||
begin intro Hs, rewrite Hs at H, apply not_mem_empty _ H end
|
||
|
||
section
|
||
open classical
|
||
|
||
theorem exists_mem_of_ne_empty {s : set X} (H : s ≠ ∅) : ∃ x, x ∈ s :=
|
||
by_contradiction (assume H', H (eq_empty_of_forall_not_mem (forall_not_of_not_exists H')))
|
||
end
|
||
|
||
theorem empty_subset (s : set X) : ∅ ⊆ s :=
|
||
take x, assume H, false.elim H
|
||
|
||
theorem eq_empty_of_subset_empty {s : set X} (H : s ⊆ ∅) : s = ∅ :=
|
||
subset.antisymm H (empty_subset s)
|
||
|
||
theorem subset_empty_iff (s : set X) : s ⊆ ∅ ↔ s = ∅ :=
|
||
iff.intro eq_empty_of_subset_empty (take xeq, by rewrite xeq; apply subset.refl ∅)
|
||
|
||
lemma bounded_forall_empty_iff {P : X → Prop} :
|
||
(∀₀x∈∅, P x) ↔ true :=
|
||
iff.intro (take H, true.intro) (take H, by contradiction)
|
||
|
||
/- universal set -/
|
||
|
||
definition univ : set X := λx, true
|
||
|
||
theorem mem_univ (x : X) : x ∈ univ := trivial
|
||
|
||
theorem mem_univ_iff (x : X) : x ∈ univ ↔ true := !iff.refl
|
||
|
||
theorem mem_univ_eq (x : X) : x ∈ univ = true := rfl
|
||
|
||
theorem empty_ne_univ [h : inhabited X] : (empty : set X) ≠ univ :=
|
||
assume H : empty = univ,
|
||
absurd (mem_univ (inhabited.value h)) (eq.rec_on H (not_mem_empty _))
|
||
|
||
theorem subset_univ (s : set X) : s ⊆ univ := λ x H, trivial
|
||
|
||
theorem eq_univ_of_univ_subset {s : set X} (H : univ ⊆ s) : s = univ :=
|
||
eq_of_subset_of_subset (subset_univ s) H
|
||
|
||
theorem eq_univ_of_forall {s : set X} (H : ∀ x, x ∈ s) : s = univ :=
|
||
ext (take x, iff.intro (assume H', trivial) (assume H', H x))
|
||
|
||
/- union -/
|
||
|
||
definition union (a b : set X) : set X := λx, x ∈ a ∨ x ∈ b
|
||
notation a ∪ b := union a b
|
||
|
||
theorem mem_union_left {x : X} {a : set X} (b : set X) : x ∈ a → x ∈ a ∪ b :=
|
||
assume h, or.inl h
|
||
|
||
theorem mem_union_right {x : X} {b : set X} (a : set X) : x ∈ b → x ∈ a ∪ b :=
|
||
assume h, or.inr h
|
||
|
||
theorem mem_unionl {x : X} {a b : set X} : x ∈ a → x ∈ a ∪ b :=
|
||
assume h, or.inl h
|
||
|
||
theorem mem_unionr {x : X} {a b : set X} : x ∈ b → x ∈ a ∪ b :=
|
||
assume h, or.inr h
|
||
|
||
theorem mem_or_mem_of_mem_union {x : X} {a b : set X} (H : x ∈ a ∪ b) : x ∈ a ∨ x ∈ b := H
|
||
|
||
theorem mem_union.elim {x : X} {a b : set X} {P : Prop}
|
||
(H₁ : x ∈ a ∪ b) (H₂ : x ∈ a → P) (H₃ : x ∈ b → P) : P :=
|
||
or.elim H₁ H₂ H₃
|
||
|
||
theorem mem_union_iff (x : X) (a b : set X) : x ∈ a ∪ b ↔ x ∈ a ∨ x ∈ b := !iff.refl
|
||
|
||
theorem mem_union_eq (x : X) (a b : set X) : x ∈ a ∪ b = (x ∈ a ∨ x ∈ b) := rfl
|
||
|
||
theorem union_self (a : set X) : a ∪ a = a :=
|
||
ext (take x, !or_self)
|
||
|
||
theorem union_empty (a : set X) : a ∪ ∅ = a :=
|
||
ext (take x, !or_false)
|
||
|
||
theorem empty_union (a : set X) : ∅ ∪ a = a :=
|
||
ext (take x, !false_or)
|
||
|
||
theorem union_comm (a b : set X) : a ∪ b = b ∪ a :=
|
||
ext (take x, or.comm)
|
||
|
||
theorem union_assoc (a b c : set X) : (a ∪ b) ∪ c = a ∪ (b ∪ c) :=
|
||
ext (take x, or.assoc)
|
||
|
||
theorem union_left_comm (s₁ s₂ s₃ : set X) : s₁ ∪ (s₂ ∪ s₃) = s₂ ∪ (s₁ ∪ s₃) :=
|
||
!left_comm union_comm union_assoc s₁ s₂ s₃
|
||
|
||
theorem union_right_comm (s₁ s₂ s₃ : set X) : (s₁ ∪ s₂) ∪ s₃ = (s₁ ∪ s₃) ∪ s₂ :=
|
||
!right_comm union_comm union_assoc s₁ s₂ s₃
|
||
|
||
theorem subset_union_left (s t : set X) : s ⊆ s ∪ t := λ x H, or.inl H
|
||
|
||
theorem subset_union_right (s t : set X) : t ⊆ s ∪ t := λ x H, or.inr H
|
||
|
||
theorem union_subset {s t r : set X} (sr : s ⊆ r) (tr : t ⊆ r) : s ∪ t ⊆ r :=
|
||
λ x xst, or.elim xst (λ xs, sr xs) (λ xt, tr xt)
|
||
|
||
/- intersection -/
|
||
|
||
definition inter (a b : set X) : set X := λx, x ∈ a ∧ x ∈ b
|
||
notation a ∩ b := inter a b
|
||
|
||
theorem mem_inter_iff (x : X) (a b : set X) : x ∈ a ∩ b ↔ x ∈ a ∧ x ∈ b := !iff.refl
|
||
|
||
theorem mem_inter_eq (x : X) (a b : set X) : x ∈ a ∩ b = (x ∈ a ∧ x ∈ b) := rfl
|
||
|
||
theorem mem_inter {x : X} {a b : set X} (Ha : x ∈ a) (Hb : x ∈ b) : x ∈ a ∩ b :=
|
||
and.intro Ha Hb
|
||
|
||
theorem mem_of_mem_inter_left {x : X} {a b : set X} (H : x ∈ a ∩ b) : x ∈ a :=
|
||
and.left H
|
||
|
||
theorem mem_of_mem_inter_right {x : X} {a b : set X} (H : x ∈ a ∩ b) : x ∈ b :=
|
||
and.right H
|
||
|
||
theorem inter_self (a : set X) : a ∩ a = a :=
|
||
ext (take x, !and_self)
|
||
|
||
theorem inter_empty (a : set X) : a ∩ ∅ = ∅ :=
|
||
ext (take x, !and_false)
|
||
|
||
theorem empty_inter (a : set X) : ∅ ∩ a = ∅ :=
|
||
ext (take x, !false_and)
|
||
|
||
theorem nonempty_of_inter_nonempty_right {T : Type} {s t : set T} (H : s ∩ t ≠ ∅) : t ≠ ∅ :=
|
||
suppose t = ∅,
|
||
have s ∩ t = ∅, by rewrite this; apply inter_empty,
|
||
H this
|
||
|
||
theorem nonempty_of_inter_nonempty_left {T : Type} {s t : set T} (H : s ∩ t ≠ ∅) : s ≠ ∅ :=
|
||
suppose s = ∅,
|
||
have s ∩ t = ∅, by rewrite this; apply empty_inter,
|
||
H this
|
||
|
||
theorem inter_comm (a b : set X) : a ∩ b = b ∩ a :=
|
||
ext (take x, !and.comm)
|
||
|
||
theorem inter_assoc (a b c : set X) : (a ∩ b) ∩ c = a ∩ (b ∩ c) :=
|
||
ext (take x, !and.assoc)
|
||
|
||
theorem inter_left_comm (s₁ s₂ s₃ : set X) : s₁ ∩ (s₂ ∩ s₃) = s₂ ∩ (s₁ ∩ s₃) :=
|
||
!left_comm inter_comm inter_assoc s₁ s₂ s₃
|
||
|
||
theorem inter_right_comm (s₁ s₂ s₃ : set X) : (s₁ ∩ s₂) ∩ s₃ = (s₁ ∩ s₃) ∩ s₂ :=
|
||
!right_comm inter_comm inter_assoc s₁ s₂ s₃
|
||
|
||
theorem inter_univ (a : set X) : a ∩ univ = a :=
|
||
ext (take x, !and_true)
|
||
|
||
theorem univ_inter (a : set X) : univ ∩ a = a :=
|
||
ext (take x, !true_and)
|
||
|
||
theorem inter_subset_left (s t : set X) : s ∩ t ⊆ s := λ x H, and.left H
|
||
|
||
theorem inter_subset_right (s t : set X) : s ∩ t ⊆ t := λ x H, and.right H
|
||
|
||
theorem inter_subset_inter_right {s t : set X} (u : set X) (H : s ⊆ t) : s ∩ u ⊆ t ∩ u :=
|
||
take x, assume xsu, and.intro (H (and.left xsu)) (and.right xsu)
|
||
|
||
theorem inter_subset_inter_left {s t : set X} (u : set X) (H : s ⊆ t) : u ∩ s ⊆ u ∩ t :=
|
||
take x, assume xus, and.intro (and.left xus) (H (and.right xus))
|
||
|
||
theorem subset_inter {s t r : set X} (rs : r ⊆ s) (rt : r ⊆ t) : r ⊆ s ∩ t :=
|
||
λ x xr, and.intro (rs xr) (rt xr)
|
||
|
||
theorem not_mem_of_mem_of_not_mem_inter_left {s t : set X} {x : X} (Hxs : x ∈ s) (Hnm : x ∉ s ∩ t) : x ∉ t :=
|
||
suppose x ∈ t,
|
||
have x ∈ s ∩ t, from and.intro Hxs this,
|
||
show false, from Hnm this
|
||
|
||
theorem not_mem_of_mem_of_not_mem_inter_right {s t : set X} {x : X} (Hxs : x ∈ t) (Hnm : x ∉ s ∩ t) : x ∉ s :=
|
||
suppose x ∈ s,
|
||
have x ∈ s ∩ t, from and.intro this Hxs,
|
||
show false, from Hnm this
|
||
|
||
/- distributivity laws -/
|
||
|
||
theorem inter_distrib_left (s t u : set X) : s ∩ (t ∪ u) = (s ∩ t) ∪ (s ∩ u) :=
|
||
ext (take x, !and.left_distrib)
|
||
|
||
theorem inter_distrib_right (s t u : set X) : (s ∪ t) ∩ u = (s ∩ u) ∪ (t ∩ u) :=
|
||
ext (take x, !and.right_distrib)
|
||
|
||
theorem union_distrib_left (s t u : set X) : s ∪ (t ∩ u) = (s ∪ t) ∩ (s ∪ u) :=
|
||
ext (take x, !or.left_distrib)
|
||
|
||
theorem union_distrib_right (s t u : set X) : (s ∩ t) ∪ u = (s ∪ u) ∩ (t ∪ u) :=
|
||
ext (take x, !or.right_distrib)
|
||
|
||
/- set-builder notation -/
|
||
|
||
-- {x : X | P}
|
||
definition set_of (P : X → Prop) : set X := P
|
||
notation `{` binder ` | ` r:(scoped:1 P, set_of P) `}` := r
|
||
|
||
-- {x ∈ s | P}
|
||
definition sep (P : X → Prop) (s : set X) : set X := λx, x ∈ s ∧ P x
|
||
notation `{` binder ` ∈ ` s ` | ` r:(scoped:1 p, sep p s) `}` := r
|
||
|
||
/- insert -/
|
||
|
||
definition insert (x : X) (a : set X) : set X := {y : X | y = x ∨ y ∈ a}
|
||
|
||
-- '{x, y, z}
|
||
notation `'{`:max a:(foldr `, ` (x b, insert x b) ∅) `}`:0 := a
|
||
|
||
theorem subset_insert (x : X) (a : set X) : a ⊆ insert x a :=
|
||
take y, assume ys, or.inr ys
|
||
|
||
theorem mem_insert (x : X) (s : set X) : x ∈ insert x s :=
|
||
or.inl rfl
|
||
|
||
theorem mem_insert_of_mem {x : X} {s : set X} (y : X) : x ∈ s → x ∈ insert y s :=
|
||
assume h, or.inr h
|
||
|
||
theorem eq_or_mem_of_mem_insert {x a : X} {s : set X} : x ∈ insert a s → x = a ∨ x ∈ s :=
|
||
assume h, h
|
||
|
||
theorem mem_of_mem_insert_of_ne {x a : X} {s : set X} (xin : x ∈ insert a s) : x ≠ a → x ∈ s :=
|
||
or_resolve_right (eq_or_mem_of_mem_insert xin)
|
||
|
||
theorem mem_insert_eq (x a : X) (s : set X) : x ∈ insert a s = (x = a ∨ x ∈ s) :=
|
||
propext (iff.intro !eq_or_mem_of_mem_insert
|
||
(or.rec (λH', (eq.substr H' !mem_insert)) !mem_insert_of_mem))
|
||
|
||
theorem insert_eq_of_mem {a : X} {s : set X} (H : a ∈ s) : insert a s = s :=
|
||
ext (λ x, eq.substr (mem_insert_eq x a s)
|
||
(or_iff_right_of_imp (λH1, eq.substr H1 H)))
|
||
|
||
theorem insert.comm (x y : X) (s : set X) : insert x (insert y s) = insert y (insert x s) :=
|
||
ext (take a, by rewrite [*mem_insert_eq, propext !or.left_comm])
|
||
|
||
-- useful in proofs by induction
|
||
theorem forall_of_forall_insert {P : X → Prop} {a : X} {s : set X}
|
||
(H : ∀ x, x ∈ insert a s → P x) :
|
||
∀ x, x ∈ s → P x :=
|
||
λ x xs, H x (!mem_insert_of_mem xs)
|
||
|
||
lemma bounded_forall_insert_iff {P : X → Prop} {a : X} {s : set X} :
|
||
(∀₀x ∈ insert a s, P x) ↔ P a ∧ (∀₀x ∈ s, P x) :=
|
||
begin
|
||
apply iff.intro, all_goals (intro H),
|
||
{ apply and.intro,
|
||
{ apply H, apply mem_insert },
|
||
{ intro x Hx, apply H, apply mem_insert_of_mem, assumption } },
|
||
{ intro x Hx, cases Hx with eq Hx,
|
||
{ cases eq, apply (and.elim_left H) },
|
||
{ apply (and.elim_right H), assumption } }
|
||
end
|
||
|
||
/- singleton -/
|
||
|
||
theorem mem_singleton_iff (a b : X) : a ∈ '{b} ↔ a = b :=
|
||
iff.intro
|
||
(assume ainb, or.elim ainb (λ aeqb, aeqb) (λ f, false.elim f))
|
||
(assume aeqb, or.inl aeqb)
|
||
|
||
theorem mem_singleton (a : X) : a ∈ '{a} := !mem_insert
|
||
|
||
theorem eq_of_mem_singleton {x y : X} (h : x ∈ '{y}) : x = y :=
|
||
or.elim (eq_or_mem_of_mem_insert h)
|
||
(suppose x = y, this)
|
||
(suppose x ∈ ∅, absurd this !not_mem_empty)
|
||
|
||
theorem mem_singleton_of_eq {x y : X} (H : x = y) : x ∈ '{y} :=
|
||
eq.symm H ▸ mem_singleton y
|
||
|
||
theorem insert_eq (x : X) (s : set X) : insert x s = '{x} ∪ s :=
|
||
ext (take y, iff.intro
|
||
(suppose y ∈ insert x s,
|
||
or.elim this (suppose y = x, or.inl (or.inl this)) (suppose y ∈ s, or.inr this))
|
||
(suppose y ∈ '{x} ∪ s,
|
||
or.elim this
|
||
(suppose y ∈ '{x}, or.inl (eq_of_mem_singleton this))
|
||
(suppose y ∈ s, or.inr this)))
|
||
|
||
theorem pair_eq_singleton (a : X) : '{a, a} = '{a} :=
|
||
by rewrite [insert_eq_of_mem !mem_singleton]
|
||
|
||
theorem singleton_ne_empty (a : X) : '{a} ≠ ∅ :=
|
||
begin
|
||
intro H,
|
||
apply not_mem_empty a,
|
||
rewrite -H,
|
||
apply mem_insert
|
||
end
|
||
|
||
/- separation -/
|
||
|
||
theorem mem_sep {s : set X} {P : X → Prop} {x : X} (xs : x ∈ s) (Px : P x) : x ∈ {x ∈ s | P x} :=
|
||
and.intro xs Px
|
||
|
||
theorem eq_sep_of_subset {s t : set X} (ssubt : s ⊆ t) : s = {x ∈ t | x ∈ s} :=
|
||
ext (take x, iff.intro
|
||
(suppose x ∈ s, and.intro (ssubt this) this)
|
||
(suppose x ∈ {x ∈ t | x ∈ s}, and.right this))
|
||
|
||
theorem mem_sep_iff {s : set X} {P : X → Prop} {x : X} : x ∈ {x ∈ s | P x} ↔ x ∈ s ∧ P x :=
|
||
!iff.refl
|
||
|
||
theorem sep_subset (s : set X) (P : X → Prop) : {x ∈ s | P x} ⊆ s :=
|
||
take x, assume H, and.left H
|
||
|
||
theorem forall_not_of_sep_empty {s : set X} {P : X → Prop} (H : {x ∈ s | P x} = ∅) : ∀₀ x ∈ s, ¬ P x :=
|
||
take x, suppose x ∈ s, suppose P x,
|
||
have x ∈ {x ∈ s | P x}, from and.intro `x ∈ s` this,
|
||
show false, from ne_empty_of_mem this H
|
||
|
||
/- complement -/
|
||
|
||
definition compl (s : set X) : set X := {x | x ∉ s}
|
||
prefix `-` := compl
|
||
|
||
theorem mem_compl {s : set X} {x : X} (H : x ∉ s) : x ∈ -s := H
|
||
|
||
theorem not_mem_of_mem_compl {s : set X} {x : X} (H : x ∈ -s) : x ∉ s := H
|
||
|
||
theorem mem_compl_iff (s : set X) (x : X) : x ∈ -s ↔ x ∉ s := !iff.refl
|
||
|
||
theorem inter_compl_self (s : set X) : s ∩ -s = ∅ :=
|
||
ext (take x, !and_not_self_iff)
|
||
|
||
theorem compl_inter_self (s : set X) : -s ∩ s = ∅ :=
|
||
ext (take x, !not_and_self_iff)
|
||
|
||
/- some classical identities -/
|
||
|
||
section
|
||
open classical
|
||
|
||
theorem compl_empty : -(∅ : set X) = univ :=
|
||
ext (take x, iff.intro (assume H, trivial) (assume H, not_false))
|
||
|
||
theorem compl_union (s t : set X) : -(s ∪ t) = -s ∩ -t :=
|
||
ext (take x, !not_or_iff_not_and_not)
|
||
|
||
theorem compl_compl (s : set X) : -(-s) = s :=
|
||
ext (take x, !not_not_iff)
|
||
|
||
theorem compl_inter (s t : set X) : -(s ∩ t) = -s ∪ -t :=
|
||
ext (take x, !not_and_iff_not_or_not)
|
||
|
||
theorem compl_univ : -(univ : set X) = ∅ :=
|
||
by rewrite [-compl_empty, compl_compl]
|
||
|
||
theorem union_eq_compl_compl_inter_compl (s t : set X) : s ∪ t = -(-s ∩ -t) :=
|
||
ext (take x, !or_iff_not_and_not)
|
||
|
||
theorem inter_eq_compl_compl_union_compl (s t : set X) : s ∩ t = -(-s ∪ -t) :=
|
||
ext (take x, !and_iff_not_or_not)
|
||
|
||
theorem union_compl_self (s : set X) : s ∪ -s = univ :=
|
||
ext (take x, !or_not_self_iff)
|
||
|
||
theorem compl_union_self (s : set X) : -s ∪ s = univ :=
|
||
ext (take x, !not_or_self_iff)
|
||
|
||
theorem compl_comp_compl :
|
||
#function compl ∘ compl = @id (set X) :=
|
||
funext (λ s, compl_compl s)
|
||
end
|
||
|
||
/- set difference -/
|
||
|
||
definition diff (s t : set X) : set X := {x ∈ s | x ∉ t}
|
||
infix ` \ `:70 := diff
|
||
|
||
theorem mem_diff {s t : set X} {x : X} (H1 : x ∈ s) (H2 : x ∉ t) : x ∈ s \ t :=
|
||
and.intro H1 H2
|
||
|
||
theorem mem_of_mem_diff {s t : set X} {x : X} (H : x ∈ s \ t) : x ∈ s :=
|
||
and.left H
|
||
|
||
theorem not_mem_of_mem_diff {s t : set X} {x : X} (H : x ∈ s \ t) : x ∉ t :=
|
||
and.right H
|
||
|
||
theorem mem_diff_iff (s t : set X) (x : X) : x ∈ s \ t ↔ x ∈ s ∧ x ∉ t := !iff.refl
|
||
|
||
theorem mem_diff_eq (s t : set X) (x : X) : x ∈ s \ t = (x ∈ s ∧ x ∉ t) := rfl
|
||
|
||
theorem diff_eq (s t : set X) : s \ t = s ∩ -t := rfl
|
||
|
||
theorem union_diff_cancel {s t : set X} [dec : Π x, decidable (x ∈ s)] (H : s ⊆ t) : s ∪ (t \ s) = t :=
|
||
ext (take x, iff.intro
|
||
(assume H1 : x ∈ s ∪ (t \ s), or.elim H1 (assume H2, !H H2) (assume H2, and.left H2))
|
||
(assume H1 : x ∈ t,
|
||
decidable.by_cases
|
||
(suppose x ∈ s, or.inl this)
|
||
(suppose x ∉ s, or.inr (and.intro H1 this))))
|
||
|
||
theorem diff_subset (s t : set X) : s \ t ⊆ s := inter_subset_left s _
|
||
|
||
theorem compl_eq_univ_diff (s : set X) : -s = univ \ s :=
|
||
ext (take x, iff.intro (assume H, and.intro trivial H) (assume H, and.right H))
|
||
|
||
/- powerset -/
|
||
|
||
definition powerset (s : set X) : set (set X) := {x : set X | x ⊆ s}
|
||
prefix `𝒫`:100 := powerset
|
||
|
||
theorem mem_powerset {x s : set X} (H : x ⊆ s) : x ∈ 𝒫 s := H
|
||
|
||
theorem subset_of_mem_powerset {x s : set X} (H : x ∈ 𝒫 s) : x ⊆ s := H
|
||
|
||
theorem mem_powerset_iff (x s : set X) : x ∈ 𝒫 s ↔ x ⊆ s := !iff.refl
|
||
|
||
/- function image -/
|
||
|
||
section image
|
||
|
||
variables {Y Z : Type}
|
||
|
||
abbreviation eq_on (f1 f2 : X → Y) (a : set X) : Prop :=
|
||
∀₀ x ∈ a, f1 x = f2 x
|
||
|
||
definition image (f : X → Y) (a : set X) : set Y := {y : Y | ∃x, x ∈ a ∧ f x = y}
|
||
infix ` ' ` := image
|
||
|
||
theorem image_eq_image_of_eq_on {f1 f2 : X → Y} {a : set X} (H1 : eq_on f1 f2 a) :
|
||
f1 ' a = f2 ' a :=
|
||
ext (take y, iff.intro
|
||
(assume H2,
|
||
obtain x (H3 : x ∈ a ∧ f1 x = y), from H2,
|
||
have H4 : x ∈ a, from and.left H3,
|
||
have H5 : f2 x = y, from (H1 H4)⁻¹ ⬝ and.right H3,
|
||
exists.intro x (and.intro H4 H5))
|
||
(assume H2,
|
||
obtain x (H3 : x ∈ a ∧ f2 x = y), from H2,
|
||
have H4 : x ∈ a, from and.left H3,
|
||
have H5 : f1 x = y, from (H1 H4) ⬝ and.right H3,
|
||
exists.intro x (and.intro H4 H5)))
|
||
|
||
theorem mem_image {f : X → Y} {a : set X} {x : X} {y : Y}
|
||
(H1 : x ∈ a) (H2 : f x = y) : y ∈ f ' a :=
|
||
exists.intro x (and.intro H1 H2)
|
||
|
||
theorem mem_image_of_mem (f : X → Y) {x : X} {a : set X} (H : x ∈ a) : f x ∈ image f a :=
|
||
mem_image H rfl
|
||
|
||
lemma image_comp (f : Y → Z) (g : X → Y) (a : set X) : (f ∘ g) ' a = f ' (g ' a) :=
|
||
ext (take z,
|
||
iff.intro
|
||
(assume Hz : z ∈ (f ∘ g) ' a,
|
||
obtain x (Hx₁ : x ∈ a) (Hx₂ : f (g x) = z), from Hz,
|
||
have Hgx : g x ∈ g ' a, from mem_image Hx₁ rfl,
|
||
show z ∈ f ' (g ' a), from mem_image Hgx Hx₂)
|
||
(assume Hz : z ∈ f ' (g 'a),
|
||
obtain y (Hy₁ : y ∈ g ' a) (Hy₂ : f y = z), from Hz,
|
||
obtain x (Hz₁ : x ∈ a) (Hz₂ : g x = y), from Hy₁,
|
||
show z ∈ (f ∘ g) ' a, from mem_image Hz₁ (Hz₂⁻¹ ▸ Hy₂)))
|
||
|
||
lemma image_subset {a b : set X} (f : X → Y) (H : a ⊆ b) : f ' a ⊆ f ' b :=
|
||
take y, assume Hy : y ∈ f ' a,
|
||
obtain x (Hx₁ : x ∈ a) (Hx₂ : f x = y), from Hy,
|
||
mem_image (H Hx₁) Hx₂
|
||
|
||
theorem image_union (f : X → Y) (s t : set X) :
|
||
image f (s ∪ t) = image f s ∪ image f t :=
|
||
ext (take y, iff.intro
|
||
(assume H : y ∈ image f (s ∪ t),
|
||
obtain x [(xst : x ∈ s ∪ t) (fxy : f x = y)], from H,
|
||
or.elim xst
|
||
(assume xs, or.inl (mem_image xs fxy))
|
||
(assume xt, or.inr (mem_image xt fxy)))
|
||
(assume H : y ∈ image f s ∪ image f t,
|
||
or.elim H
|
||
(assume yifs : y ∈ image f s,
|
||
obtain x [(xs : x ∈ s) (fxy : f x = y)], from yifs,
|
||
mem_image (or.inl xs) fxy)
|
||
(assume yift : y ∈ image f t,
|
||
obtain x [(xt : x ∈ t) (fxy : f x = y)], from yift,
|
||
mem_image (or.inr xt) fxy)))
|
||
|
||
theorem image_empty (f : X → Y) : image f ∅ = ∅ :=
|
||
eq_empty_of_forall_not_mem
|
||
(take y, suppose y ∈ image f ∅,
|
||
obtain x [(H : x ∈ empty) H'], from this,
|
||
H)
|
||
|
||
theorem mem_image_compl (t : set X) (S : set (set X)) :
|
||
t ∈ compl ' S ↔ -t ∈ S :=
|
||
iff.intro
|
||
(suppose t ∈ compl ' S,
|
||
obtain t' [(Ht' : t' ∈ S) (Ht : -t' = t)], from this,
|
||
show -t ∈ S, by rewrite [-Ht, compl_compl]; exact Ht')
|
||
(suppose -t ∈ S,
|
||
have -(-t) ∈ compl 'S, from mem_image_of_mem compl this,
|
||
show t ∈ compl 'S, from compl_compl t ▸ this)
|
||
|
||
theorem image_id (s : set X) : id ' s = s :=
|
||
ext (take x, iff.intro
|
||
(suppose x ∈ id ' s,
|
||
obtain x' [(Hx' : x' ∈ s) (x'eq : x' = x)], from this,
|
||
show x ∈ s, by rewrite [-x'eq]; apply Hx')
|
||
(suppose x ∈ s, mem_image_of_mem id this))
|
||
|
||
theorem compl_compl_image (S : set (set X)) :
|
||
compl ' (compl ' S) = S :=
|
||
by rewrite [-image_comp, compl_comp_compl, image_id]
|
||
|
||
lemma bounded_forall_image_of_bounded_forall {f : X → Y} {S : set X} {P : Y → Prop}
|
||
(H : ∀₀ x ∈ S, P (f x)) : ∀₀ y ∈ f ' S, P y :=
|
||
begin
|
||
intro x' Hx;
|
||
cases Hx with x Hx;
|
||
cases Hx with Hx eq;
|
||
rewrite (eq⁻¹);
|
||
apply H;
|
||
assumption
|
||
end
|
||
|
||
lemma bounded_forall_image_iff {f : X → Y} {S : set X} {P : Y → Prop} :
|
||
(∀₀ y ∈ f ' S, P y) ↔ (∀₀ x ∈ S, P (f x)) :=
|
||
iff.intro (take H x Hx, H _ (!mem_image_of_mem `x ∈ S`)) bounded_forall_image_of_bounded_forall
|
||
|
||
lemma image_insert_eq {f : X → Y} {a : X} {S : set X} :
|
||
f ' insert a S = insert (f a) (f ' S) :=
|
||
begin
|
||
apply set.ext,
|
||
intro x, apply iff.intro, all_goals (intros H),
|
||
{ cases H with y Hy, cases Hy with Hy eq, rewrite (eq⁻¹), cases Hy with y_eq,
|
||
{ rewrite y_eq, apply mem_insert },
|
||
{ apply mem_insert_of_mem, apply mem_image_of_mem, assumption } },
|
||
{ cases H with eq Hx,
|
||
{ rewrite eq, apply mem_image_of_mem, apply mem_insert },
|
||
{ cases Hx with y Hy, cases Hy with Hy eq,
|
||
rewrite (eq⁻¹), apply mem_image_of_mem, apply mem_insert_of_mem, assumption } }
|
||
end
|
||
|
||
end image
|
||
|
||
/- collections of disjoint sets -/
|
||
|
||
definition disjoint_sets (S : set (set X)) : Prop := ∀ a b, a ∈ S → b ∈ S → a ≠ b → a ∩ b = ∅
|
||
|
||
theorem disjoint_sets_empty : disjoint_sets (∅ : set (set X)) :=
|
||
take a b, assume H, !not.elim !not_mem_empty H
|
||
|
||
theorem disjoint_sets_union {s t : set (set X)} (Hs : disjoint_sets s) (Ht : disjoint_sets t)
|
||
(H : ∀ x y, x ∈ s ∧ y ∈ t → x ∩ y = ∅) :
|
||
disjoint_sets (s ∪ t) :=
|
||
take a b, assume Ha Hb Hneq, or.elim Ha
|
||
(assume H1, or.elim Hb
|
||
(suppose b ∈ s, (Hs a b) H1 this Hneq)
|
||
(suppose b ∈ t, (H a b) (and.intro H1 this)))
|
||
(assume H2, or.elim Hb
|
||
(suppose b ∈ s, !inter_comm ▸ ((H b a) (and.intro this H2)))
|
||
(suppose b ∈ t, (Ht a b) H2 this Hneq))
|
||
|
||
theorem disjoint_sets_singleton (s : set (set X)) : disjoint_sets '{s} :=
|
||
take a b, assume Ha Hb Hneq,
|
||
absurd (eq.trans ((iff.elim_left !mem_singleton_iff) Ha) ((iff.elim_left !mem_singleton_iff) Hb)⁻¹)
|
||
Hneq
|
||
|
||
/- large unions -/
|
||
|
||
section large_unions
|
||
variables {I : Type}
|
||
variable a : set I
|
||
variable b : I → set X
|
||
variable C : set (set X)
|
||
|
||
definition sUnion : set X := {x : X | ∃₀ c ∈ C, x ∈ c}
|
||
definition sInter : set X := {x : X | ∀₀ c ∈ C, x ∈ c}
|
||
|
||
prefix `⋃₀`:110 := sUnion
|
||
prefix `⋂₀`:110 := sInter
|
||
|
||
definition Union : set X := {x : X | ∃i, x ∈ b i}
|
||
definition Inter : set X := {x : X | ∀i, x ∈ b i}
|
||
|
||
notation `⋃` binders `, ` r:(scoped f, Union f) := r
|
||
notation `⋂` binders `, ` r:(scoped f, Inter f) := r
|
||
|
||
definition bUnion : set X := {x : X | ∃₀ i ∈ a, x ∈ b i}
|
||
definition bInter : set X := {x : X | ∀₀ i ∈ a, x ∈ b i}
|
||
|
||
notation `⋃` binders ` ∈ ` s `, ` r:(scoped f, bUnion s f) := r
|
||
notation `⋂` binders ` ∈ ` s `, ` r:(scoped f, bInter s f) := r
|
||
|
||
end large_unions
|
||
|
||
-- sUnion and sInter: a collection (set) of sets
|
||
|
||
theorem mem_sUnion {x : X} {t : set X} {S : set (set X)} (Hx : x ∈ t) (Ht : t ∈ S) :
|
||
x ∈ ⋃₀ S :=
|
||
exists.intro t (and.intro Ht Hx)
|
||
|
||
theorem not_mem_of_not_mem_sUnion {x : X} {t : set X} {S : set (set X)} (Hx : x ∉ ⋃₀ S) (Ht : t ∈ S) :
|
||
x ∉ t :=
|
||
suppose x ∈ t,
|
||
have x ∈ ⋃₀ S, from mem_sUnion this Ht,
|
||
show false, from Hx this
|
||
|
||
theorem mem_sInter {x : X} {t : set X} {S : set (set X)} (H : ∀₀ t ∈ S, x ∈ t) :
|
||
x ∈ ⋂₀ S :=
|
||
H
|
||
|
||
theorem sInter_subset_of_mem {S : set (set X)} {t : set X} (tS : t ∈ S) :
|
||
(⋂₀ S) ⊆ t :=
|
||
take x, assume H, H t tS
|
||
|
||
theorem subset_sUnion_of_mem {S : set (set X)} {t : set X} (tS : t ∈ S) :
|
||
t ⊆ (⋃₀ S) :=
|
||
take x, assume H, exists.intro t (and.intro tS H)
|
||
|
||
theorem sUnion_empty : ⋃₀ ∅ = (∅ : set X) :=
|
||
eq_empty_of_forall_not_mem
|
||
(take x, suppose x ∈ sUnion ∅,
|
||
obtain t [(Ht : t ∈ ∅) Ht'], from this,
|
||
show false, from Ht)
|
||
|
||
theorem sInter_empty : ⋂₀ ∅ = (univ : set X) :=
|
||
eq_univ_of_forall (λ x s H, false.elim H)
|
||
|
||
theorem sUnion_singleton (s : set X) : ⋃₀ '{s} = s :=
|
||
ext (take x, iff.intro
|
||
(suppose x ∈ sUnion '{s},
|
||
obtain u [(Hu : u ∈ '{s}) (xu : x ∈ u)], from this,
|
||
have u = s, from eq_of_mem_singleton Hu,
|
||
show x ∈ s, by rewrite -this; apply xu)
|
||
(suppose x ∈ s,
|
||
mem_sUnion this (mem_singleton s)))
|
||
|
||
theorem sInter_singleton (s : set X) : ⋂₀ '{s} = s :=
|
||
ext (take x, iff.intro
|
||
(suppose x ∈ ⋂₀ '{s}, show x ∈ s, from this (mem_singleton s))
|
||
(suppose x ∈ s, take u, suppose u ∈ '{s},
|
||
show x ∈ u, by rewrite [eq_of_mem_singleton this]; assumption))
|
||
|
||
theorem sUnion_union (S T : set (set X)) : ⋃₀ (S ∪ T) = ⋃₀ S ∪ ⋃₀ T :=
|
||
ext (take x, iff.intro
|
||
(suppose x ∈ sUnion (S ∪ T),
|
||
obtain u [(Hu : u ∈ S ∪ T) (xu : x ∈ u)], from this,
|
||
or.elim Hu
|
||
(assume uS, or.inl (mem_sUnion xu uS))
|
||
(assume uT, or.inr (mem_sUnion xu uT)))
|
||
(suppose x ∈ sUnion S ∪ sUnion T,
|
||
or.elim this
|
||
(suppose x ∈ sUnion S,
|
||
obtain u [(uS : u ∈ S) (xu : x ∈ u)], from this,
|
||
mem_sUnion xu (or.inl uS))
|
||
(suppose x ∈ sUnion T,
|
||
obtain u [(uT : u ∈ T) (xu : x ∈ u)], from this,
|
||
mem_sUnion xu (or.inr uT))))
|
||
|
||
theorem sInter_union (S T : set (set X)) : ⋂₀ (S ∪ T) = ⋂₀ S ∩ ⋂₀ T :=
|
||
ext (take x, iff.intro
|
||
(assume H : x ∈ ⋂₀ (S ∪ T),
|
||
and.intro (λ u uS, H (or.inl uS)) (λ u uT, H (or.inr uT)))
|
||
(assume H : x ∈ ⋂₀ S ∩ ⋂₀ T,
|
||
take u, suppose u ∈ S ∪ T, or.elim this (λ uS, and.left H u uS) (λ uT, and.right H u uT)))
|
||
|
||
theorem sUnion_insert (s : set X) (T : set (set X)) :
|
||
⋃₀ (insert s T) = s ∪ ⋃₀ T :=
|
||
by rewrite [insert_eq, sUnion_union, sUnion_singleton]
|
||
|
||
theorem sInter_insert (s : set X) (T : set (set X)) :
|
||
⋂₀ (insert s T) = s ∩ ⋂₀ T :=
|
||
by rewrite [insert_eq, sInter_union, sInter_singleton]
|
||
|
||
theorem compl_sUnion (S : set (set X)) :
|
||
- ⋃₀ S = ⋂₀ (compl ' S) :=
|
||
ext (take x, iff.intro
|
||
(assume H : x ∈ -(⋃₀ S),
|
||
take t, suppose t ∈ compl ' S,
|
||
obtain t' [(Ht' : t' ∈ S) (Ht : -t' = t)], from this,
|
||
have x ∈ -t', from suppose x ∈ t', H (mem_sUnion this Ht'),
|
||
show x ∈ t, by rewrite -Ht; apply this)
|
||
(assume H : x ∈ ⋂₀ (compl ' S),
|
||
suppose x ∈ ⋃₀ S,
|
||
obtain t [(tS : t ∈ S) (xt : x ∈ t)], from this,
|
||
have -t ∈ compl ' S, from mem_image_of_mem compl tS,
|
||
have x ∈ -t, from H this,
|
||
show false, proof this xt qed))
|
||
|
||
theorem sUnion_eq_compl_sInter_compl (S : set (set X)) :
|
||
⋃₀ S = - ⋂₀ (compl ' S) :=
|
||
by rewrite [-compl_compl (⋃₀ S), compl_sUnion]
|
||
|
||
theorem compl_sInter (S : set (set X)) :
|
||
- ⋂₀ S = ⋃₀ (compl ' S) :=
|
||
by rewrite [sUnion_eq_compl_sInter_compl, compl_compl_image]
|
||
|
||
theorem sInter_eq_comp_sUnion_compl (S : set (set X)) :
|
||
⋂₀ S = -(⋃₀ (compl ' S)) :=
|
||
by rewrite [-compl_compl (⋂₀ S), compl_sInter]
|
||
|
||
theorem inter_sUnion_nonempty_of_inter_nonempty {s t : set X} {S : set (set X)} (Hs : t ∈ S) (Hne : s ∩ t ≠ ∅) :
|
||
s ∩ ⋃₀ S ≠ ∅ :=
|
||
obtain x Hsx Htx, from exists_mem_of_ne_empty Hne,
|
||
have x ∈ ⋃₀ S, from mem_sUnion Htx Hs,
|
||
ne_empty_of_mem (mem_inter Hsx this)
|
||
|
||
theorem sUnion_inter_nonempty_of_inter_nonempty {s t : set X} {S : set (set X)} (Hs : t ∈ S) (Hne : t ∩ s ≠ ∅) :
|
||
(⋃₀ S) ∩ s ≠ ∅ :=
|
||
obtain x Htx Hsx, from exists_mem_of_ne_empty Hne,
|
||
have x ∈ ⋃₀ S, from mem_sUnion Htx Hs,
|
||
ne_empty_of_mem (mem_inter this Hsx)
|
||
|
||
-- Union and Inter: a family of sets indexed by a type
|
||
|
||
theorem Union_subset {I : Type} {b : I → set X} {c : set X} (H : ∀ i, b i ⊆ c) : (⋃ i, b i) ⊆ c :=
|
||
take x,
|
||
suppose x ∈ Union b,
|
||
obtain i (Hi : x ∈ b i), from this,
|
||
show x ∈ c, from H i Hi
|
||
|
||
theorem subset_Inter {I : Type} {b : I → set X} {c : set X} (H : ∀ i, c ⊆ b i) : c ⊆ ⋂ i, b i :=
|
||
λ x cx i, H i cx
|
||
|
||
theorem Union_eq_sUnion_image {X I : Type} (s : I → set X) : (⋃ i, s i) = ⋃₀ (s ' univ) :=
|
||
ext (take x, iff.intro
|
||
(suppose x ∈ Union s,
|
||
obtain i (Hi : x ∈ s i), from this,
|
||
mem_sUnion Hi (mem_image_of_mem s trivial))
|
||
(suppose x ∈ sUnion (s ' univ),
|
||
obtain t [(Ht : t ∈ s ' univ) (Hx : x ∈ t)], from this,
|
||
obtain i [univi (Hi : s i = t)], from Ht,
|
||
exists.intro i (show x ∈ s i, by rewrite Hi; apply Hx)))
|
||
|
||
theorem Inter_eq_sInter_image {X I : Type} (s : I → set X) : (⋂ i, s i) = ⋂₀ (s ' univ) :=
|
||
ext (take x, iff.intro
|
||
(assume H : x ∈ Inter s,
|
||
take t,
|
||
suppose t ∈ s 'univ,
|
||
obtain i [univi (Hi : s i = t)], from this,
|
||
show x ∈ t, by rewrite -Hi; exact H i)
|
||
(assume H : x ∈ ⋂₀ (s ' univ),
|
||
take i,
|
||
have s i ∈ s ' univ, from mem_image_of_mem s trivial,
|
||
show x ∈ s i, from H this))
|
||
|
||
theorem compl_Union {X I : Type} (s : I → set X) : - (⋃ i, s i) = (⋂ i, - s i) :=
|
||
by rewrite [Union_eq_sUnion_image, compl_sUnion, -image_comp, -Inter_eq_sInter_image]
|
||
|
||
theorem compl_Inter {X I : Type} (s : I → set X) : -(⋂ i, s i) = (⋃ i, - s i) :=
|
||
by rewrite [Inter_eq_sInter_image, compl_sInter, -image_comp, -Union_eq_sUnion_image]
|
||
|
||
theorem Union_eq_comp_Inter_comp {X I : Type} (s : I → set X) : (⋃ i, s i) = - (⋂ i, - s i) :=
|
||
by rewrite [-compl_compl (⋃ i, s i), compl_Union]
|
||
|
||
theorem Inter_eq_comp_Union_comp {X I : Type} (s : I → set X) : (⋂ i, s i) = - (⋃ i, -s i) :=
|
||
by rewrite [-compl_compl (⋂ i, s i), compl_Inter]
|
||
|
||
lemma inter_distrib_Union_left {X I : Type} (s : I → set X) (a : set X) :
|
||
a ∩ (⋃ i, s i) = ⋃ i, a ∩ s i :=
|
||
ext (take x, iff.intro
|
||
(assume H, obtain i Hi, from and.elim_right H,
|
||
have x ∈ a ∩ s i, from and.intro (and.elim_left H) Hi,
|
||
show _, from exists.intro i this)
|
||
(assume H, obtain i [xa xsi], from H,
|
||
show _, from and.intro xa (exists.intro i xsi)))
|
||
|
||
section
|
||
open classical
|
||
|
||
lemma union_distrib_Inter_left {X I : Type} (s : I → set X) (a : set X) :
|
||
a ∪ (⋂ i, s i) = ⋂ i, a ∪ s i :=
|
||
ext (take x, iff.intro
|
||
(assume H, or.elim H
|
||
(assume H1, take i, or.inl H1)
|
||
(assume H1, take i, or.inr (H1 i)))
|
||
(assume H,
|
||
by_cases
|
||
(suppose x ∈ a, or.inl this)
|
||
(suppose x ∉ a, or.inr (take i, or.resolve_left (H i) this))))
|
||
end
|
||
|
||
-- these are useful for turning binary union / intersection into countable ones
|
||
|
||
definition bin_ext (s t : set X) (n : ℕ) : set X :=
|
||
nat.cases_on n s (λ m, t)
|
||
|
||
lemma Union_bin_ext (s t : set X) : (⋃ i, bin_ext s t i) = s ∪ t :=
|
||
ext (take x, iff.intro
|
||
(assume H,
|
||
obtain i (Hi : x ∈ (bin_ext s t) i), from H,
|
||
by cases i; apply or.inl Hi; apply or.inr Hi)
|
||
(assume H,
|
||
or.elim H
|
||
(suppose x ∈ s, exists.intro 0 this)
|
||
(suppose x ∈ t, exists.intro 1 this)))
|
||
|
||
lemma Inter_bin_ext (s t : set X) : (⋂ i, bin_ext s t i) = s ∩ t :=
|
||
ext (take x, iff.intro
|
||
(assume H, and.intro (H 0) (H 1))
|
||
(assume H, by intro i; cases i;
|
||
apply and.elim_left H; apply and.elim_right H))
|
||
|
||
-- bUnion and bInter: a family of sets indexed by a set ("b" is for bounded)
|
||
|
||
variable {Y : Type}
|
||
|
||
theorem mem_bUnion {s : set X} {f : X → set Y} {x : X} {y : Y}
|
||
(xs : x ∈ s) (yfx : y ∈ f x) :
|
||
y ∈ ⋃ x ∈ s, f x :=
|
||
exists.intro x (and.intro xs yfx)
|
||
|
||
theorem mem_bInter {s : set X} {f : X → set Y} {y : Y} (H : ∀₀ x ∈ s, y ∈ f x) :
|
||
y ∈ ⋂ x ∈ s, f x :=
|
||
H
|
||
|
||
theorem bUnion_subset {s : set X} {t : set Y} {f : X → set Y} (H : ∀₀ x ∈ s, f x ⊆ t) :
|
||
(⋃ x ∈ s, f x) ⊆ t :=
|
||
take y, assume Hy,
|
||
obtain x [xs yfx], from Hy,
|
||
show y ∈ t, from H xs yfx
|
||
|
||
theorem subset_bInter {s : set X} {t : set Y} {f : X → set Y} (H : ∀₀ x ∈ s, t ⊆ f x) :
|
||
t ⊆ ⋂ x ∈ s, f x :=
|
||
take y, assume yt, take x, assume xs, H xs yt
|
||
|
||
theorem subset_bUnion_of_mem {s : set X} {f : X → set Y} {x : X} (xs : x ∈ s) :
|
||
f x ⊆ ⋃ x ∈ s, f x :=
|
||
take y, assume Hy, mem_bUnion xs Hy
|
||
|
||
theorem bInter_subset_of_mem {s : set X} {f : X → set Y} {x : X} (xs : x ∈ s) :
|
||
(⋂ x ∈ s, f x) ⊆ f x :=
|
||
take y, assume Hy, Hy x xs
|
||
|
||
theorem bInter_empty (f : X → set Y) : (⋂ x ∈ (∅ : set X), f x) = univ :=
|
||
eq_univ_of_forall (take y x xine, absurd xine !not_mem_empty)
|
||
|
||
theorem bInter_singleton (a : X) (f : X → set Y) : (⋂ x ∈ '{a}, f x) = f a :=
|
||
ext (take y, iff.intro
|
||
(assume H, H a !mem_singleton)
|
||
(assume H, λ x xa, by rewrite [eq_of_mem_singleton xa]; apply H))
|
||
|
||
theorem bInter_union (s t : set X) (f : X → set Y) :
|
||
(⋂ x ∈ s ∪ t, f x) = (⋂ x ∈ s, f x) ∩ (⋂ x ∈ t, f x) :=
|
||
ext (take y, iff.intro
|
||
(assume H, and.intro (λ x xs, H x (or.inl xs)) (λ x xt, H x (or.inr xt)))
|
||
(assume H, λ x xst, or.elim (xst) (λ xs, and.left H x xs) (λ xt, and.right H x xt)))
|
||
|
||
theorem bInter_insert (a : X) (s : set X) (f : X → set Y) :
|
||
(⋂ x ∈ insert a s, f x) = f a ∩ (⋂ x ∈ s, f x) :=
|
||
by rewrite [insert_eq, bInter_union, bInter_singleton]
|
||
|
||
theorem bInter_pair (a b : X) (f : X → set Y) :
|
||
(⋂ x ∈ '{a, b}, f x) = f a ∩ f b :=
|
||
by rewrite [*bInter_insert, bInter_empty, inter_univ]
|
||
|
||
theorem bUnion_empty (f : X → set Y) : (⋃ x ∈ (∅ : set X), f x) = ∅ :=
|
||
eq_empty_of_forall_not_mem (λ y H, obtain x [xine yfx], from H,
|
||
!not_mem_empty xine)
|
||
|
||
theorem bUnion_singleton (a : X) (f : X → set Y) : (⋃ x ∈ '{a}, f x) = f a :=
|
||
ext (take y, iff.intro
|
||
(assume H, obtain x [xina yfx], from H,
|
||
show y ∈ f a, by rewrite [-eq_of_mem_singleton xina]; exact yfx)
|
||
(assume H, exists.intro a (and.intro !mem_singleton H)))
|
||
|
||
theorem bUnion_union (s t : set X) (f : X → set Y) :
|
||
(⋃ x ∈ s ∪ t, f x) = (⋃ x ∈ s, f x) ∪ (⋃ x ∈ t, f x) :=
|
||
ext (take y, iff.intro
|
||
(assume H, obtain x [xst yfx], from H,
|
||
or.elim xst
|
||
(λ xs, or.inl (exists.intro x (and.intro xs yfx)))
|
||
(λ xt, or.inr (exists.intro x (and.intro xt yfx))))
|
||
(assume H, or.elim H
|
||
(assume H1, obtain x [xs yfx], from H1,
|
||
exists.intro x (and.intro (or.inl xs) yfx))
|
||
(assume H1, obtain x [xt yfx], from H1,
|
||
exists.intro x (and.intro (or.inr xt) yfx))))
|
||
|
||
theorem bUnion_insert (a : X) (s : set X) (f : X → set Y) :
|
||
(⋃ x ∈ insert a s, f x) = f a ∪ (⋃ x ∈ s, f x) :=
|
||
by rewrite [insert_eq, bUnion_union, bUnion_singleton]
|
||
|
||
theorem bUnion_pair (a b : X) (f : X → set Y) :
|
||
(⋃ x ∈ '{a, b}, f x) = f a ∪ f b :=
|
||
by rewrite [*bUnion_insert, bUnion_empty, union_empty]
|
||
|
||
end set
|