412 lines
15 KiB
Text
412 lines
15 KiB
Text
/-
|
||
Copyright (c) 2016 Robert Y. Lewis. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Author: Robert Y. Lewis
|
||
|
||
Bounded linear operators
|
||
-/
|
||
import .normed_space .real_limit algebra.module
|
||
open real nat classical
|
||
noncomputable theory
|
||
|
||
namespace analysis
|
||
|
||
-- define bounded linear operators and basic instances
|
||
section bdd_lin_op
|
||
set_option pp.universes true
|
||
structure is_bdd_linear_map [class] {V W : Type} [normed_vector_space V] [normed_vector_space W] (f : V → W)
|
||
extends is_linear_map ℝ f :=
|
||
(op_norm : ℝ) (op_norm_pos : op_norm > 0) (op_norm_bound : ∀ v : V, ∥f v∥ ≤ op_norm * ∥v∥)
|
||
|
||
theorem is_bdd_linear_map_id (V : Type) [normed_vector_space V] : is_bdd_linear_map (λ x : V, x) :=
|
||
begin
|
||
fapply is_bdd_linear_map.mk,
|
||
repeat (intros; reflexivity),
|
||
exact 1,
|
||
exact zero_lt_one,
|
||
intro, rewrite one_mul, apply le.refl
|
||
end
|
||
|
||
theorem is_bdd_linear_map_zero [instance] (V W : Type) [normed_vector_space V] [normed_vector_space W] :
|
||
is_bdd_linear_map (λ x : V, (0 : W)) :=
|
||
begin
|
||
fapply is_bdd_linear_map.mk,
|
||
intros,
|
||
rewrite zero_add,
|
||
intros,
|
||
rewrite smul_zero,
|
||
exact 1,
|
||
exact zero_lt_one,
|
||
intros,
|
||
rewrite [norm_zero, one_mul],
|
||
apply norm_nonneg
|
||
end
|
||
|
||
theorem is_bdd_linear_map_add [instance] {V W : Type} [normed_vector_space V] [normed_vector_space W]
|
||
(f g : V → W) [Hbf : is_bdd_linear_map f] [Hbg : is_bdd_linear_map g] :
|
||
is_bdd_linear_map (λ x, f x + g x) :=
|
||
begin
|
||
fapply is_bdd_linear_map.mk,
|
||
{intros,
|
||
rewrite [linear_map_additive ℝ f, linear_map_additive ℝ g],
|
||
simp},
|
||
{intros,
|
||
rewrite [linear_map_homogeneous f, linear_map_homogeneous g, smul_left_distrib]},
|
||
{exact is_bdd_linear_map.op_norm _ _ f + is_bdd_linear_map.op_norm _ _ g},
|
||
{apply add_pos,
|
||
repeat apply is_bdd_linear_map.op_norm_pos},
|
||
{intro,
|
||
apply le.trans,
|
||
apply norm_triangle,
|
||
rewrite right_distrib,
|
||
apply add_le_add,
|
||
repeat apply is_bdd_linear_map.op_norm_bound}
|
||
end
|
||
|
||
theorem is_bdd_linear_map_smul [instance] {V W : Type} [normed_vector_space V] [normed_vector_space W]
|
||
(f : V → W) (c : ℝ) [Hbf : is_bdd_linear_map f] : is_bdd_linear_map (λ x, c • f x) :=
|
||
begin
|
||
apply @decidable.cases_on (c = 0),
|
||
exact _,
|
||
{intro Hcz,
|
||
rewrite Hcz,
|
||
have Hfe : (λ x : V, (0 : ℝ) • f x) = (λ x : V, 0), from funext (λ x, !zero_smul),
|
||
rewrite Hfe,
|
||
apply is_bdd_linear_map_zero},
|
||
intro Hcnz,
|
||
fapply is_bdd_linear_map.mk,
|
||
{intros,
|
||
rewrite [linear_map_additive ℝ f, smul_left_distrib]},
|
||
{intros,
|
||
rewrite [linear_map_homogeneous f, -*mul_smul, {c * a}mul.comm]},
|
||
{exact (abs c) * is_bdd_linear_map.op_norm _ _ f},
|
||
{have Hpos : abs c > 0, from abs_pos_of_ne_zero Hcnz,
|
||
apply mul_pos,
|
||
assumption,
|
||
apply is_bdd_linear_map.op_norm_pos},
|
||
{intro,
|
||
rewrite [norm_smul, mul.assoc],
|
||
apply mul_le_mul_of_nonneg_left,
|
||
apply is_bdd_linear_map.op_norm_bound,
|
||
apply abs_nonneg}
|
||
end
|
||
|
||
theorem is_bdd_linear_map_neg [instance] {V W : Type} [normed_vector_space V] [normed_vector_space W]
|
||
(f : V → W) [Hbf : is_bdd_linear_map f] : is_bdd_linear_map (λ x, -f x) :=
|
||
begin
|
||
have H : (λ x : V, -f x) = (λ x : V, (-1 : ℝ) • f x), from funext (λ x, eq.symm !neg_one_smul),
|
||
rewrite H,
|
||
apply is_bdd_linear_map_smul
|
||
end
|
||
|
||
-- this can't be an instance because things loop
|
||
theorem is_bdd_linear_map_comp {U V W : Type} [normed_vector_space U] [normed_vector_space V]
|
||
[normed_vector_space W] (f : V → W) (g : U → V) [is_bdd_linear_map f] [is_bdd_linear_map g] :
|
||
is_bdd_linear_map (λ u, f (g u)) :=
|
||
begin
|
||
fapply is_bdd_linear_map.mk,
|
||
{intros,
|
||
rewrite [linear_map_additive ℝ g, linear_map_additive ℝ f]},
|
||
{intros,
|
||
rewrite [linear_map_homogeneous g, linear_map_homogeneous f]},
|
||
{exact is_bdd_linear_map.op_norm _ _ f * is_bdd_linear_map.op_norm _ _ g},
|
||
{apply mul_pos, repeat apply is_bdd_linear_map.op_norm_pos},
|
||
{intros,
|
||
apply le.trans,
|
||
apply is_bdd_linear_map.op_norm_bound _ _ f,
|
||
apply le.trans,
|
||
apply mul_le_mul_of_nonneg_left,
|
||
apply is_bdd_linear_map.op_norm_bound _ _ g,
|
||
apply le_of_lt !is_bdd_linear_map.op_norm_pos,
|
||
rewrite *mul.assoc,
|
||
apply le.refl}
|
||
end
|
||
|
||
variables {V W : Type}
|
||
variables [HV : normed_vector_space V] [HW : normed_vector_space W]
|
||
include HV HW
|
||
variable f : V → W
|
||
variable [Hf : is_bdd_linear_map f]
|
||
include Hf
|
||
|
||
definition op_norm := is_bdd_linear_map.op_norm _ _ f
|
||
|
||
theorem op_norm_pos : op_norm f > 0 := is_bdd_linear_map.op_norm_pos _ _ f
|
||
|
||
theorem op_norm_bound (v : V) : ∥f v∥ ≤ (op_norm f) * ∥v∥ := is_bdd_linear_map.op_norm_bound _ _ f v
|
||
|
||
theorem bounded_linear_operator_continuous : continuous f :=
|
||
begin
|
||
intro x,
|
||
apply normed_vector_space.continuous_at_intro,
|
||
intro ε Hε,
|
||
existsi ε / (op_norm f),
|
||
split,
|
||
apply div_pos_of_pos_of_pos Hε !op_norm_pos,
|
||
intro x' Hx',
|
||
rewrite [-linear_map_sub f],
|
||
apply lt_of_le_of_lt,
|
||
apply op_norm_bound f,
|
||
rewrite [-@mul_div_cancel' _ _ ε (op_norm f) (ne_of_gt !op_norm_pos)],
|
||
apply mul_lt_mul_of_pos_left,
|
||
exact Hx',
|
||
apply op_norm_pos
|
||
end
|
||
|
||
end bdd_lin_op
|
||
|
||
|
||
-- define Frechet derivative and basic properties
|
||
|
||
section frechet_deriv
|
||
variables {V W : Type}
|
||
variables [HV : normed_vector_space V] [HW : normed_vector_space W]
|
||
include HV HW
|
||
|
||
definition is_frechet_deriv_at (f A : V → W) [is_bdd_linear_map A] (x : V) :=
|
||
(λ h : V, ∥f (x + h) - f x - A h ∥ / ∥ h ∥) ⟶ 0 at 0
|
||
|
||
theorem is_frechet_deriv_at_intro {f A : V → W} [is_bdd_linear_map A] {x : V}
|
||
(H : ∀ ⦃ε : ℝ⦄, ε > 0 →
|
||
(∃ δ : ℝ, δ > 0 ∧ ∀ ⦃x' : V⦄, x' ≠ 0 ∧ ∥x'∥ < δ → ∥f (x + x') - f x - A x'∥ / ∥x'∥ < ε)) :
|
||
is_frechet_deriv_at f A x :=
|
||
begin
|
||
intros ε Hε,
|
||
cases H Hε with δ Hδ,
|
||
cases Hδ with Hδ Hδ',
|
||
existsi δ,
|
||
split,
|
||
assumption,
|
||
intros x' Hx',
|
||
cases Hx' with Hx'1 Hx'2,
|
||
show abs (∥f (x + x') - f x - A x'∥ / ∥x'∥ - 0) < ε, begin
|
||
have H : ∥f (x + x') - f x - A x'∥ / ∥x'∥ ≥ 0,
|
||
from div_nonneg_of_nonneg_of_nonneg !norm_nonneg !norm_nonneg,
|
||
rewrite [sub_zero, abs_of_nonneg H],
|
||
apply Hδ',
|
||
split,
|
||
assumption,
|
||
rewrite [-sub_zero x'],
|
||
apply Hx'2
|
||
end
|
||
end
|
||
|
||
theorem is_frechet_deriv_at_elim {f A : V → W} [is_bdd_linear_map A] {x : V} (H : is_frechet_deriv_at f A x) :
|
||
∀ ⦃ε : ℝ⦄, ε > 0 →
|
||
(∃ δ : ℝ, δ > 0 ∧ ∀ ⦃x' : V⦄, x' ≠ 0 ∧ ∥x'∥ < δ → ∥f (x + x') - f x - A x'∥ / ∥x'∥ < ε) :=
|
||
begin
|
||
intros ε Hε,
|
||
cases H Hε with δ Hδ,
|
||
cases Hδ with Hδ Hδ',
|
||
existsi δ,
|
||
split,
|
||
assumption,
|
||
intros x' Hx',
|
||
rewrite [-sub_zero x' at Hx' {2}],
|
||
have Hδ'' : abs (∥f (x + x') - f x - A x'∥ / ∥x'∥ - 0) < ε, from Hδ' Hx',
|
||
have Hpos : ∥f (x + x') - f x - A x'∥ / ∥x'∥ ≥ 0, from div_nonneg_of_nonneg_of_nonneg !norm_nonneg !norm_nonneg,
|
||
rewrite [sub_zero at Hδ'', abs_of_nonneg Hpos at Hδ''],
|
||
assumption
|
||
end
|
||
|
||
structure frechet_diffable_at [class] (f : V → W) (x : V) :=
|
||
(A : V → W) [HA : is_bdd_linear_map A] (is_fr_der : is_frechet_deriv_at f A x)
|
||
|
||
variables f g : V → W
|
||
variable x : V
|
||
|
||
definition frechet_deriv_at [Hf : frechet_diffable_at f x] : V → W :=
|
||
frechet_diffable_at.A _ _ f x
|
||
|
||
definition frechet_deriv_at_is_bdd_linear_map [instance] (f : V → W) (x : V) [Hf : frechet_diffable_at f x] :
|
||
is_bdd_linear_map (frechet_deriv_at f x) :=
|
||
frechet_diffable_at.HA _ _ f x
|
||
|
||
theorem frechet_deriv_spec [Hf : frechet_diffable_at f x] :
|
||
(λ h : V, ∥f (x + h) - f x - (frechet_deriv_at f x h) ∥ / ∥ h ∥) ⟶ 0 at 0 :=
|
||
frechet_diffable_at.is_fr_der _ _ f x
|
||
|
||
theorem frechet_deriv_at_const {w : W} : is_frechet_deriv_at (λ v : V, w) (λ v : V, 0) x :=
|
||
begin
|
||
intros ε Hε,
|
||
existsi 1,
|
||
split,
|
||
exact zero_lt_one,
|
||
intros x' Hx',
|
||
rewrite [sub_self, sub_zero, norm_zero],
|
||
krewrite [zero_div, dist_self],
|
||
assumption
|
||
end
|
||
|
||
theorem frechet_deriv_at_smul {c : ℝ} {A : V → W} [is_bdd_linear_map A]
|
||
(Hf : is_frechet_deriv_at f A x) : is_frechet_deriv_at (λ y, c • f y) (λ y, c • A y) x :=
|
||
begin
|
||
eapply @decidable.cases_on (abs c = 0),
|
||
exact _,
|
||
{intro Hc,
|
||
have Hz : c = 0, from eq_zero_of_abs_eq_zero Hc,
|
||
have Hfz : (λ y : V, (0 : ℝ) • f y) = (λ y : V, 0), from funext (λ y, !zero_smul),
|
||
--have Hfz' : (λ x : V, (0 : ℝ) • A x) = (λ x : V, 0), from funext (λ y, !zero_smul),
|
||
-- rewriting Hfz' produces type-incorrect term
|
||
rewrite [Hz, Hfz, ↑is_frechet_deriv_at],
|
||
intro ε Hε,
|
||
existsi 1,
|
||
split,
|
||
exact zero_lt_one,
|
||
intro x' Hx',
|
||
rewrite [zero_smul, *sub_zero, norm_zero],
|
||
krewrite [zero_div, dist_self],
|
||
exact Hε},
|
||
intro Hcnz,
|
||
rewrite ↑is_frechet_deriv_at,
|
||
intros ε Hε,
|
||
have Hεc : ε / abs c > 0, from div_pos_of_pos_of_pos Hε (lt_of_le_of_ne !abs_nonneg (ne.symm Hcnz)),
|
||
cases Hf Hεc with δ Hδ,
|
||
cases Hδ with Hδp Hδ,
|
||
existsi δ,
|
||
split,
|
||
assumption,
|
||
intro x' Hx',
|
||
show abs ((∥c • f (x + x') - c • f x - c • A x'∥ / ∥x'∥ - 0)) < ε, begin
|
||
rewrite [sub_zero, -2 smul_sub_left_distrib, norm_smul],
|
||
krewrite mul_div_assoc,
|
||
rewrite [abs_mul, abs_abs, -{ε}mul_div_cancel' Hcnz],
|
||
apply mul_lt_mul_of_pos_left,
|
||
have Hδ' : abs (∥f (x + x') - f x - A x'∥ / ∥x'∥ - 0) < ε / abs c, from Hδ Hx',
|
||
rewrite sub_zero at Hδ',
|
||
apply Hδ',
|
||
apply lt_of_le_of_ne,
|
||
apply abs_nonneg,
|
||
apply ne.symm,
|
||
apply Hcnz
|
||
end
|
||
end
|
||
|
||
theorem is_frechet_deriv_at_neg {A : V → W} [is_bdd_linear_map A]
|
||
(Hf : is_frechet_deriv_at f A x) : is_frechet_deriv_at (λ y, - f y) (λ y, - A y) x :=
|
||
begin
|
||
apply is_frechet_deriv_at_intro,
|
||
intros ε Hε,
|
||
cases is_frechet_deriv_at_elim Hf Hε with δ Hδ,
|
||
existsi δ,
|
||
split,
|
||
exact and.left Hδ,
|
||
intro x' Hx',
|
||
rewrite [-norm_neg, neg_sub, sub_neg_eq_add, sub_add_eq_sub_sub, sub_neg_eq_add,
|
||
add_sub_assoc, add.comm, -sub_eq_add_neg],
|
||
apply and.right Hδ,
|
||
assumption
|
||
end
|
||
|
||
theorem is_frechet_deriv_at_add (A B : V → W) [is_bdd_linear_map A] [is_bdd_linear_map B]
|
||
(Hf : is_frechet_deriv_at f A x) (Hg : is_frechet_deriv_at g B x) :
|
||
is_frechet_deriv_at (λ y, f y + g y) (λ y, A y + B y) x :=
|
||
begin
|
||
rewrite ↑is_frechet_deriv_at,
|
||
have Hle : ∀ h, ∥f (x + h) + g (x + h) - (f x + g x) - (A h + B h)∥ / ∥h∥ ≤
|
||
∥f (x + h) - f x - A h∥ / ∥h∥ + ∥g (x + h) - g x - B h∥ / ∥h∥, begin
|
||
intro h,
|
||
cases em (∥h∥ > 0) with Hh Hh,
|
||
krewrite div_add_div_same,
|
||
apply div_le_div_of_le_of_pos,
|
||
have Hfeq : f (x + h) + g (x + h) - (f x + g x) - (A h + B h) =
|
||
(f (x + h) - f x - A h) + (g (x + h) - g x - B h), by simp,
|
||
rewrite Hfeq,
|
||
apply norm_triangle,
|
||
exact Hh,
|
||
have Hhe : ∥h∥ = 0, from eq_of_le_of_ge (le_of_not_gt Hh) !norm_nonneg,
|
||
krewrite [Hhe, *div_zero, zero_add],
|
||
eapply le.refl
|
||
end,
|
||
have Hlimge : (λ h, ∥f (x + h) - f x - A h∥ / ∥h∥ + ∥g (x + h) - g x - B h∥ / ∥h∥) ⟶ 0 at 0, begin
|
||
rewrite [-zero_add 0],
|
||
apply add_converges_to_at,
|
||
apply Hf,
|
||
apply Hg
|
||
end,
|
||
have Hlimle : (λ (h : V), (0 : ℝ)) ⟶ 0 at 0, from converges_to_at_constant 0 0,
|
||
apply converges_to_at_squeeze Hlimle Hlimge,
|
||
intro y,
|
||
apply div_nonneg_of_nonneg_of_nonneg,
|
||
repeat apply norm_nonneg,
|
||
apply Hle
|
||
end
|
||
|
||
open topology
|
||
|
||
theorem continuous_at_of_diffable_at [Hf : frechet_diffable_at f x] : continuous_at f x :=
|
||
begin
|
||
apply normed_vector_space.continuous_at_intro,
|
||
intros ε Hε,
|
||
note Hfds := frechet_deriv_spec f x Hε,
|
||
cases Hfds with δ Hδ,
|
||
cases Hδ with Hδ Hδ',
|
||
existsi min δ ((ε / 2) / (ε + op_norm (frechet_deriv_at f x))),
|
||
split,
|
||
apply lt_min,
|
||
exact Hδ,
|
||
repeat apply div_pos_of_pos_of_pos,
|
||
exact Hε,
|
||
apply two_pos,
|
||
apply add_pos Hε !op_norm_pos,
|
||
intro x' Hx',
|
||
cases em (x' - x = 0) with Heq Hneq,
|
||
rewrite [eq_of_sub_eq_zero Heq, sub_self, norm_zero], assumption,
|
||
have Hx'x : x' - x ≠ 0 ∧ dist (x' - x) 0 < δ, from and.intro Hneq begin
|
||
change ∥(x' - x) - 0∥ < δ,
|
||
rewrite sub_zero,
|
||
apply lt_of_lt_of_le,
|
||
apply Hx',
|
||
apply min_le_left
|
||
end,
|
||
have Hx'xp : ∥x' - x∥ > 0, from norm_pos_of_ne_zero Hneq,
|
||
have Hδ'' : abs (∥f (x + (x' - x)) - f x - frechet_deriv_at f x (x' - x)∥ / ∥x' - x∥ - 0) < ε, from Hδ' Hx'x,
|
||
have Hnn : ∥f (x + (x' - x)) - f x - frechet_deriv_at f x (x' - x)∥ / ∥x' - x∥ ≥ 0,
|
||
from div_nonneg_of_nonneg_of_nonneg !norm_nonneg !norm_nonneg,
|
||
rewrite [sub_zero at Hδ'', abs_of_nonneg Hnn at Hδ'', add.comm at Hδ'', sub_add_cancel at Hδ''],
|
||
note H1 := lt_mul_of_div_lt_of_pos Hx'xp Hδ'',
|
||
have H2 : f x' - f x = f x' - f x - frechet_deriv_at f x (x' - x) + frechet_deriv_at f x (x' - x), by simp,
|
||
rewrite H2,
|
||
apply lt_of_le_of_lt,
|
||
apply norm_triangle,
|
||
apply lt.trans, --lt_of_lt_of_le,
|
||
apply add_lt_add_of_lt_of_le,
|
||
apply H1,
|
||
apply op_norm_bound (!frechet_deriv_at),
|
||
rewrite [-add_halves ε at {2}],
|
||
apply add_lt_add,
|
||
|
||
exact calc
|
||
ε * ∥x' - x∥ < ε * min δ ((ε / 2) / (ε + op_norm (frechet_deriv_at f x))) : mul_lt_mul_of_pos_left Hx' Hε
|
||
... ≤ ε * ((ε / 2) / (ε + op_norm (frechet_deriv_at f x))) :
|
||
mul_le_mul_of_nonneg_left !min_le_right (le_of_lt Hε)
|
||
... < ε / 2 : mul_div_self_add_lt (div_pos_of_pos_of_pos Hε two_pos) Hε !op_norm_pos,
|
||
let on := op_norm (frechet_deriv_at f x),
|
||
exact calc
|
||
on * ∥x' - x∥ < on * min δ ((ε / 2) / (ε + on)) : mul_lt_mul_of_pos_left Hx' !op_norm_pos
|
||
... ≤ on * ((ε / 2) / (ε + on)) : mul_le_mul_of_nonneg_left !min_le_right (le_of_lt !op_norm_pos)
|
||
... < ε / 2 : mul_div_add_self_lt (div_pos_of_pos_of_pos Hε two_pos) Hε !op_norm_pos,
|
||
end
|
||
|
||
end frechet_deriv
|
||
|
||
/-section comp
|
||
|
||
variables {U V W : Type}
|
||
variables [HU : normed_vector_space U] [HV : normed_vector_space V] [HW : normed_vector_space W]
|
||
variables {f : V → W} {g : U → V}
|
||
variables {A : V → W} {B : U → V}
|
||
variables [HA : is_bdd_linear_map A] [HB : is_bdd_linear_map B]
|
||
variable {x : U}
|
||
include HU HV HW HA HB
|
||
|
||
theorem frechet_derivative_at_comp (Hg : is_frechet_deriv_at g B x) (Hf : is_frechet_deriv_at f A (g x)) :
|
||
@is_frechet_deriv_at _ _ _ _ (λ y, f (g y)) (λ y, A (B y)) !is_bdd_linear_map_comp x :=
|
||
begin
|
||
rewrite ↑is_frechet_deriv_at,
|
||
intros ε Hε,
|
||
end
|
||
|
||
end comp-/
|
||
|
||
end analysis
|