3eb4de6760
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
94 lines
2.9 KiB
Text
94 lines
2.9 KiB
Text
(**
|
|
-- This example demonstrates how to create Macros for automating proof
|
|
-- construction using Lua.
|
|
|
|
-- This macro creates the syntax-sugar
|
|
-- name bindings ',' expr
|
|
-- For a function f with signature
|
|
-- f : ... (A : Type) ... (Pi x : A, ...)
|
|
--
|
|
-- farity is the arity of f
|
|
-- typepos is the position of (A : Type) argument
|
|
-- lambdapos is the position of the (Pi x : A, ...) argument
|
|
--
|
|
-- Example: suppose we invoke
|
|
--
|
|
-- binder_macro("for", Const("ForallIntro"), 3, 1, 3)
|
|
--
|
|
-- Then, the macro expression
|
|
--
|
|
-- for x y : Int, H x y
|
|
--
|
|
-- produces the expression
|
|
--
|
|
-- ForallIntro Int _ (fun x : Int, ForallIntro Int _ (fun y : Int, H x y))
|
|
--
|
|
-- The _ are placeholders (aka) holes that will be filled by the Lean
|
|
-- elaborator.
|
|
function binder_macro(name, f, farity, typepos, lambdapos)
|
|
macro(name, { macro_arg.Bindings, macro_arg.Comma, macro_arg.Expr },
|
|
function (bindings, body)
|
|
local r = body
|
|
for i = #bindings, 1, -1 do
|
|
local bname = bindings[i][1]
|
|
local btype = bindings[i][2]
|
|
local args = {}
|
|
args[#args + 1] = f
|
|
for j = 1, farity, 1 do
|
|
if j == typepos then
|
|
args[#args + 1] = btype
|
|
elseif j == lambdapos then
|
|
args[#args + 1] = fun(bname, btype, r)
|
|
else
|
|
args[#args + 1] = mk_placeholder()
|
|
end
|
|
end
|
|
r = mk_app(unpack(args))
|
|
end
|
|
return r
|
|
end)
|
|
end
|
|
|
|
function nary_macro(name, f, farity)
|
|
local bin_app = function(e1, e2)
|
|
local args = {}
|
|
args[#args + 1] = f
|
|
for i = 1, farity - 2, 1 do
|
|
args[#args + 1] = mk_placeholder()
|
|
end
|
|
args[#args + 1] = e1
|
|
args[#args + 1] = e2
|
|
return mk_app(unpack(args))
|
|
end
|
|
|
|
macro(name, { macro_arg.Expr, macro_arg.Expr, macro_arg.Exprs },
|
|
function (e1, e2, rest)
|
|
local r = bin_app(e1, e2)
|
|
for i = 1, #rest do
|
|
r = bin_app(r, rest[i])
|
|
end
|
|
return r
|
|
end)
|
|
end
|
|
|
|
binder_macro("for", Const("ForallIntro"), 3, 1, 3)
|
|
binder_macro("assume", Const("Discharge"), 3, 1, 3)
|
|
nary_macro("instantiate", Const("ForallElim"), 4)
|
|
nary_macro("mp", Const("MP"), 4)
|
|
**)
|
|
|
|
Definition Set (A : Type) : Type := A → Bool
|
|
|
|
Definition element {A : Type} (x : A) (s : Set A) := s x
|
|
Infix 60 ∈ : element
|
|
|
|
Definition subset {A : Type} (s1 : Set A) (s2 : Set A) := ∀ x, x ∈ s1 ⇒ x ∈ s2
|
|
Infix 50 ⊆ : subset
|
|
|
|
Theorem SubsetTrans (A : Type) : ∀ s1 s2 s3 : Set A, s1 ⊆ s2 ⇒ s2 ⊆ s3 ⇒ s1 ⊆ s3 :=
|
|
for s1 s2 s3, assume (H1 : s1 ⊆ s2) (H2 : s2 ⊆ s3),
|
|
show s1 ⊆ s3,
|
|
for x, assume Hin : x ∈ s1,
|
|
show x ∈ s3,
|
|
let L1 : x ∈ s2 := mp (instantiate H1 x) Hin
|
|
in mp (instantiate H2 x) L1
|