74 lines
1.9 KiB
Text
74 lines
1.9 KiB
Text
-- Conditional congruence
|
|
import logic.connectives logic.quantifiers
|
|
|
|
namespace if_congr
|
|
constants {A : Type} {b c : Prop} (dec_b : decidable b) (dec_c : decidable c)
|
|
{x y u v : A} (h_c : b ↔ c) (h_t : x = u) (h_e : y = v)
|
|
|
|
local attribute dec_b [instance]
|
|
local attribute dec_c [instance]
|
|
local attribute h_c [simp]
|
|
local attribute h_t [simp]
|
|
local attribute h_e [simp]
|
|
|
|
attribute if_congr [congr]
|
|
|
|
#simplify eq 0 (ite b x y)
|
|
end if_congr
|
|
|
|
namespace if_ctx_simp_congr
|
|
constants {A : Type} {b c : Prop} (dec_b : decidable b)
|
|
{x y u v : A} (h_c : b ↔ c) (h_t : c → x = u) (h_e : ¬c → y = v)
|
|
|
|
local attribute dec_b [instance]
|
|
local attribute h_c [simp]
|
|
local attribute h_t [simp]
|
|
local attribute h_e [simp]
|
|
|
|
attribute if_ctx_simp_congr [congr]
|
|
|
|
#simplify eq 0 (ite b x y)
|
|
|
|
end if_ctx_simp_congr
|
|
|
|
namespace if_congr_prop
|
|
constants {b c x y u v : Prop} (dec_b : decidable b) (dec_c : decidable c)
|
|
(h_c : b ↔ c) (h_t : c → (x ↔ u)) (h_e : ¬c → (y ↔ v))
|
|
|
|
local attribute dec_b [instance]
|
|
local attribute dec_c [instance]
|
|
local attribute h_c [simp]
|
|
local attribute h_t [simp]
|
|
local attribute h_e [simp]
|
|
|
|
attribute if_congr_prop [congr]
|
|
|
|
#simplify iff 0 (ite b x y)
|
|
end if_congr_prop
|
|
|
|
namespace if_ctx_simp_congr_prop
|
|
constants (b c x y u v : Prop) (dec_b : decidable b)
|
|
(h_c : b ↔ c) (h_t : c → (x ↔ u)) (h_e : ¬ c → (y ↔ v))
|
|
|
|
local attribute dec_b [instance]
|
|
local attribute h_c [simp]
|
|
local attribute h_t [simp]
|
|
local attribute h_e [simp]
|
|
|
|
attribute if_ctx_simp_congr_prop [congr]
|
|
#simplify iff 0 (ite b x y)
|
|
|
|
end if_ctx_simp_congr_prop
|
|
|
|
namespace if_simp_congr_prop
|
|
constants (b c x y u v : Prop) (dec_b : decidable b)
|
|
(h_c : b ↔ c) (h_t : x ↔ u) (h_e : y ↔ v)
|
|
|
|
local attribute dec_b [instance]
|
|
local attribute h_c [simp]
|
|
local attribute h_t [simp]
|
|
local attribute h_e [simp]
|
|
|
|
attribute if_simp_congr_prop [congr]
|
|
#simplify iff 0 (ite b x y)
|
|
end if_simp_congr_prop
|