lean2/hott/homotopy/connectedness.hlean

76 lines
2.3 KiB
Text

/-
Copyright (c) 2015 Ulrik Buchholtz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Ulrik Buchholtz
-/
import types.trunc
open eq is_trunc is_equiv nat equiv trunc function
-- TODO(Ulrik) move this to somewhere else (cannot be sigma b/c dep. on fiber)
namespace sigma
variables {A : Type} {P Q : A → Type}
definition total [reducible] (f : Πa, P a → Q a) : (Σa, P a) → (Σa, Q a) :=
sigma.rec (λa p, ⟨a , f a p⟩)
-- Theorem 4.7.6
--definition fiber_total_equiv (f : Πa, P a → Q a) {a : A} (q : Q a)
-- : fiber (total f) ⟨a , q⟩ ≃ fiber (f a) q :=
--sorry
end sigma
-- TODO(Ulrik) move this to somewhere else (cannot be unit b/c dep. on fiber)
namespace unit
definition fiber_star_equiv (A : Type) : fiber (λx : A, star) star ≃ A :=
begin
fapply equiv.MK,
{ intro f, cases f with a H, exact a },
{ intro a, apply fiber.mk a, reflexivity },
{ intro a, reflexivity },
{ intro f, cases f with a H, change fiber.mk a (refl star) = fiber.mk a H,
rewrite [is_hset.elim H (refl star)] }
end
end unit
namespace homotopy
definition is_conn (n : trunc_index) (A : Type) : Type :=
is_contr (trunc n A)
definition is_conn_map (n : trunc_index) {A B : Type} (f : A → B) : Type :=
Πb : B, is_conn n (fiber f b)
definition is_conn_of_map_to_unit (n : trunc_index) (A : Type)
: is_conn_map n (λx : A, unit.star) → is_conn n A :=
begin
intro H, unfold is_conn_map at H,
rewrite [-(ua (unit.fiber_star_equiv A))],
exact (H unit.star)
end
-- Lemma 7.5.2
definition minus_one_conn_of_surjective {A B : Type} (f : A → B)
: is_surjective f → is_conn_map -1 f :=
begin
intro H, intro b,
exact @is_contr_of_inhabited_hprop (∥fiber f b∥) (is_trunc_trunc -1 (fiber f b)) (H b),
end
definition is_surjection_of_minus_one_conn {A B : Type} (f : A → B)
: is_conn_map -1 f → is_surjective f :=
begin
intro H, intro b,
exact @center (∥fiber f b∥) (H b),
end
definition merely_of_minus_one_conn {A : Type} : is_conn -1 A → ∥ A ∥ :=
λH, @center (∥A∥) H
definition minus_one_conn_of_merely {A : Type} : ∥A∥ → is_conn -1 A :=
@is_contr_of_inhabited_hprop (∥A∥) (is_trunc_trunc -1 A)
end homotopy