lean2/hott/types/trunc.hlean
2016-04-11 09:45:59 -07:00

618 lines
22 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Jakob von Raumer. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
Properties of trunc_index, is_trunc, trunctype, trunc, and the pointed versions of these
-/
-- NOTE: the fact that (is_trunc n A) is a mere proposition is proved in .prop_trunc
import .pointed2 ..function algebra.order types.nat.order
open eq sigma sigma.ops pi function equiv trunctype
is_equiv prod pointed nat is_trunc algebra
/- basic computation with ℕ₋₂, its operations and its order -/
namespace trunc_index
definition minus_one_le_succ (n : ℕ₋₂) : -1 ≤ n.+1 :=
succ_le_succ (minus_two_le n)
definition zero_le_of_nat (n : ) : 0 ≤ of_nat n :=
succ_le_succ !minus_one_le_succ
open decidable
protected definition has_decidable_eq [instance] : Π(n m : ℕ₋₂), decidable (n = m)
| has_decidable_eq -2 -2 := inl rfl
| has_decidable_eq (n.+1) -2 := inr (by contradiction)
| has_decidable_eq -2 (m.+1) := inr (by contradiction)
| has_decidable_eq (n.+1) (m.+1) :=
match has_decidable_eq n m with
| inl xeqy := inl (by rewrite xeqy)
| inr xney := inr (λ h : succ n = succ m, by injection h with xeqy; exact absurd xeqy xney)
end
definition not_succ_le_minus_two {n : ℕ₋₂} (H : n .+1 ≤ -2) : empty :=
by cases H
protected definition le_trans {n m k : ℕ₋₂} (H1 : n ≤ m) (H2 : m ≤ k) : n ≤ k :=
begin
induction H2 with k H2 IH,
{ exact H1},
{ exact le.step IH}
end
definition le_of_succ_le_succ {n m : ℕ₋₂} (H : n.+1 ≤ m.+1) : n ≤ m :=
begin
cases H with m H',
{ apply le.tr_refl},
{ exact trunc_index.le_trans (le.step !le.tr_refl) H'}
end
theorem not_succ_le_self {n : ℕ₋₂} : ¬n.+1 ≤ n :=
begin
induction n with n IH: intro H,
{ exact not_succ_le_minus_two H},
{ exact IH (le_of_succ_le_succ H)}
end
protected definition le_antisymm {n m : ℕ₋₂} (H1 : n ≤ m) (H2 : m ≤ n) : n = m :=
begin
induction H2 with n H2 IH,
{ reflexivity},
{ exfalso, apply @not_succ_le_self n, exact trunc_index.le_trans H1 H2}
end
protected definition le_succ {n m : ℕ₋₂} (H1 : n ≤ m): n ≤ m.+1 :=
le.step H1
end trunc_index open trunc_index
definition weak_order_trunc_index [trans_instance] [reducible] : weak_order trunc_index :=
weak_order.mk le trunc_index.le.tr_refl @trunc_index.le_trans @trunc_index.le_antisymm
namespace trunc_index
/- more theorems about truncation indices -/
definition zero_add (n : ℕ₋₂) : (0 : ℕ₋₂) + n = n :=
begin
cases n with n, reflexivity,
cases n with n, reflexivity,
induction n with n IH, reflexivity, exact ap succ IH
end
definition add_zero (n : ℕ₋₂) : n + (0 : ℕ₋₂) = n :=
by reflexivity
definition succ_add_nat (n : ℕ₋₂) (m : ) : n.+1 + m = (n + m).+1 :=
by induction m with m IH; reflexivity; exact ap succ IH
definition nat_add_succ (n : ) (m : ℕ₋₂) : n + m.+1 = (n + m).+1 :=
begin
cases m with m, reflexivity,
cases m with m, reflexivity,
induction m with m IH, reflexivity, exact ap succ IH
end
definition add_nat_succ (n : ℕ₋₂) (m : ) : n + (nat.succ m) = (n + m).+1 :=
by reflexivity
definition nat_succ_add (n : ) (m : ℕ₋₂) : (nat.succ n) + m = (n + m).+1 :=
begin
cases m with m, reflexivity,
cases m with m, reflexivity,
induction m with m IH, reflexivity, exact ap succ IH
end
definition sub_two_add_two (n : ℕ₋₂) : sub_two (add_two n) = n :=
begin
induction n with n IH,
{ reflexivity},
{ exact ap succ IH}
end
definition add_two_sub_two (n : ) : add_two (sub_two n) = n :=
begin
induction n with n IH,
{ reflexivity},
{ exact ap nat.succ IH}
end
definition of_nat_add_plus_two_of_nat (n m : ) : n +2+ m = of_nat (n + m + 2) :=
begin
induction m with m IH,
{ reflexivity},
{ exact ap succ IH}
end
definition of_nat_add_of_nat (n m : ) : of_nat n + of_nat m = of_nat (n + m) :=
begin
induction m with m IH,
{ reflexivity},
{ exact ap succ IH}
end
definition succ_add_plus_two (n m : ℕ₋₂) : n.+1 +2+ m = (n +2+ m).+1 :=
begin
induction m with m IH,
{ reflexivity},
{ exact ap succ IH}
end
definition add_plus_two_succ (n m : ℕ₋₂) : n +2+ m.+1 = (n +2+ m).+1 :=
idp
definition add_succ_succ (n m : ℕ₋₂) : n + m.+2 = n +2+ m :=
idp
definition succ_add_succ (n m : ℕ₋₂) : n.+1 + m.+1 = n +2+ m :=
begin
cases m with m IH,
{ reflexivity},
{ apply succ_add_plus_two}
end
definition succ_succ_add (n m : ℕ₋₂) : n.+2 + m = n +2+ m :=
begin
cases m with m IH,
{ reflexivity},
{ exact !succ_add_succ ⬝ !succ_add_plus_two}
end
definition succ_sub_two (n : ) : (nat.succ n).-2 = n.-2 .+1 := rfl
definition sub_two_succ_succ (n : ) : n.-2.+1.+1 = n := rfl
definition succ_sub_two_succ (n : ) : (nat.succ n).-2.+1 = n := rfl
definition of_nat_le_of_nat {n m : } (H : n ≤ m) : (of_nat n ≤ of_nat m) :=
begin
induction H with m H IH,
{ apply le.refl},
{ exact trunc_index.le_succ IH}
end
definition sub_two_le_sub_two {n m : } (H : n ≤ m) : n.-2 ≤ m.-2 :=
begin
induction H with m H IH,
{ apply le.refl},
{ exact trunc_index.le_succ IH}
end
definition add_two_le_add_two {n m : ℕ₋₂} (H : n ≤ m) : add_two n ≤ add_two m :=
begin
induction H with m H IH,
{ reflexivity},
{ constructor, exact IH},
end
definition le_of_sub_two_le_sub_two {n m : } (H : n.-2 ≤ m.-2) : n ≤ m :=
begin
rewrite [-add_two_sub_two n, -add_two_sub_two m],
exact add_two_le_add_two H,
end
definition le_of_of_nat_le_of_nat {n m : } (H : of_nat n ≤ of_nat m) : n ≤ m :=
begin
apply le_of_sub_two_le_sub_two,
exact le_of_succ_le_succ (le_of_succ_le_succ H)
end
end trunc_index open trunc_index
namespace is_trunc
variables {A B : Type} {n : ℕ₋₂}
/- closure properties of truncatedness -/
theorem is_trunc_is_embedding_closed (f : A → B) [Hf : is_embedding f] [HB : is_trunc n B]
(Hn : -1 ≤ n) : is_trunc n A :=
begin
induction n with n,
{exfalso, exact not_succ_le_minus_two Hn},
{apply is_trunc_succ_intro, intro a a',
fapply @is_trunc_is_equiv_closed_rev _ _ n (ap f)}
end
theorem is_trunc_is_retraction_closed (f : A → B) [Hf : is_retraction f]
(n : ℕ₋₂) [HA : is_trunc n A] : is_trunc n B :=
begin
revert A B f Hf HA,
induction n with n IH,
{ intro A B f Hf HA, induction Hf with g ε, fapply is_contr.mk,
{ exact f (center A)},
{ intro b, apply concat,
{ apply (ap f), exact (center_eq (g b))},
{ apply ε}}},
{ intro A B f Hf HA, induction Hf with g ε,
apply is_trunc_succ_intro, intro b b',
fapply (IH (g b = g b')),
{ intro q, exact ((ε b)⁻¹ ⬝ ap f q ⬝ ε b')},
{ apply (is_retraction.mk (ap g)),
{ intro p, induction p, {rewrite [↑ap, con.left_inv]}}},
{ apply is_trunc_eq}}
end
definition is_embedding_to_fun (A B : Type) : is_embedding (@to_fun A B) :=
λf f', !is_equiv_ap_to_fun
/- theorems about trunctype -/
protected definition trunctype.sigma_char.{l} [constructor] (n : ℕ₋₂) :
(trunctype.{l} n) ≃ (Σ (A : Type.{l}), is_trunc n A) :=
begin
fapply equiv.MK,
{ intro A, exact (⟨carrier A, struct A⟩)},
{ intro S, exact (trunctype.mk S.1 S.2)},
{ intro S, induction S with S1 S2, reflexivity},
{ intro A, induction A with A1 A2, reflexivity},
end
definition trunctype_eq_equiv [constructor] (n : ℕ₋₂) (A B : n-Type) :
(A = B) ≃ (carrier A = carrier B) :=
calc
(A = B) ≃ (to_fun (trunctype.sigma_char n) A = to_fun (trunctype.sigma_char n) B)
: eq_equiv_fn_eq_of_equiv
... ≃ ((to_fun (trunctype.sigma_char n) A).1 = (to_fun (trunctype.sigma_char n) B).1)
: equiv.symm (!equiv_subtype)
... ≃ (carrier A = carrier B) : equiv.refl
theorem is_trunc_trunctype [instance] (n : ℕ₋₂) : is_trunc n.+1 (n-Type) :=
begin
apply is_trunc_succ_intro, intro X Y,
fapply is_trunc_equiv_closed_rev, { apply trunctype_eq_equiv},
fapply is_trunc_equiv_closed_rev, { apply eq_equiv_equiv},
induction n,
{ apply @is_contr_of_inhabited_prop,
{ apply is_trunc_is_embedding_closed,
{ apply is_embedding_to_fun} ,
{ reflexivity}},
{ apply equiv_of_is_contr_of_is_contr}},
{ apply is_trunc_is_embedding_closed,
{ apply is_embedding_to_fun},
{ apply minus_one_le_succ}}
end
/- theorems about decidable equality and axiom K -/
theorem is_set_of_axiom_K {A : Type} (K : Π{a : A} (p : a = a), p = idp) : is_set A :=
is_set.mk _ (λa b p q, eq.rec K q p)
theorem is_set_of_relation.{u} {A : Type.{u}} (R : A → A → Type.{u})
(mere : Π(a b : A), is_prop (R a b)) (refl : Π(a : A), R a a)
(imp : Π{a b : A}, R a b → a = b) : is_set A :=
is_set_of_axiom_K
(λa p,
have H2 : transport (λx, R a x → a = x) p (@imp a a) = @imp a a, from !apdt,
have H3 : Π(r : R a a), transport (λx, a = x) p (imp r)
= imp (transport (λx, R a x) p r), from
to_fun (equiv.symm !heq_pi) H2,
have H4 : imp (refl a) ⬝ p = imp (refl a), from
calc
imp (refl a) ⬝ p = transport (λx, a = x) p (imp (refl a)) : transport_eq_r
... = imp (transport (λx, R a x) p (refl a)) : H3
... = imp (refl a) : is_prop.elim,
cancel_left (imp (refl a)) H4)
definition relation_equiv_eq {A : Type} (R : A → A → Type)
(mere : Π(a b : A), is_prop (R a b)) (refl : Π(a : A), R a a)
(imp : Π{a b : A}, R a b → a = b) (a b : A) : R a b ≃ a = b :=
have is_set A, from is_set_of_relation R mere refl @imp,
equiv_of_is_prop imp (λp, p ▸ refl a)
local attribute not [reducible]
theorem is_set_of_double_neg_elim {A : Type} (H : Π(a b : A), ¬¬a = b → a = b)
: is_set A :=
is_set_of_relation (λa b, ¬¬a = b) _ (λa n, n idp) H
section
open decidable
--this is proven differently in init.hedberg
theorem is_set_of_decidable_eq (A : Type) [H : decidable_eq A] : is_set A :=
is_set_of_double_neg_elim (λa b, by_contradiction)
end
theorem is_trunc_of_axiom_K_of_le {A : Type} (n : ℕ₋₂) (H : -1 ≤ n)
(K : Π(a : A), is_trunc n (a = a)) : is_trunc (n.+1) A :=
@is_trunc_succ_intro _ _ (λa b, is_trunc_of_imp_is_trunc_of_le H (λp, eq.rec_on p !K))
theorem is_trunc_succ_of_is_trunc_loop (Hn : -1 ≤ n) (Hp : Π(a : A), is_trunc n (a = a))
: is_trunc (n.+1) A :=
begin
apply is_trunc_succ_intro, intros a a',
apply is_trunc_of_imp_is_trunc_of_le Hn, intro p,
induction p, apply Hp
end
theorem is_prop_iff_is_contr {A : Type} (a : A) :
is_prop A ↔ is_contr A :=
iff.intro (λH, is_contr.mk a (is_prop.elim a)) _
theorem is_trunc_succ_iff_is_trunc_loop (A : Type) (Hn : -1 ≤ n) :
is_trunc (n.+1) A ↔ Π(a : A), is_trunc n (a = a) :=
iff.intro _ (is_trunc_succ_of_is_trunc_loop Hn)
theorem is_trunc_iff_is_contr_loop_succ (n : ) (A : Type)
: is_trunc n A ↔ Π(a : A), is_contr (Ω[succ n](pointed.Mk a)) :=
begin
revert A, induction n with n IH,
{ intro A, esimp [iterated_ploop_space], transitivity _,
{ apply is_trunc_succ_iff_is_trunc_loop, apply le.refl},
{ apply pi_iff_pi, intro a, esimp, apply is_prop_iff_is_contr, reflexivity}},
{ intro A, esimp [iterated_ploop_space],
transitivity _,
{ apply @is_trunc_succ_iff_is_trunc_loop @n, esimp, apply minus_one_le_succ},
apply pi_iff_pi, intro a, transitivity _, apply IH,
transitivity _, apply pi_iff_pi, intro p,
rewrite [iterated_loop_space_loop_irrel n p], apply iff.refl, esimp,
apply imp_iff, reflexivity}
end
theorem is_trunc_iff_is_contr_loop (n : ) (A : Type)
: is_trunc (n.-2.+1) A ↔ (Π(a : A), is_contr (Ω[n](pointed.Mk a))) :=
begin
induction n with n,
{ esimp [sub_two,iterated_ploop_space], apply iff.intro,
intro H a, exact is_contr_of_inhabited_prop a,
intro H, apply is_prop_of_imp_is_contr, exact H},
{ apply is_trunc_iff_is_contr_loop_succ},
end
theorem is_contr_loop_of_is_trunc (n : ) (A : Type*) [H : is_trunc (n.-2.+1) A] :
is_contr (Ω[n] A) :=
begin
induction A,
apply iff.mp !is_trunc_iff_is_contr_loop H
end
theorem is_trunc_loop_of_is_trunc (n : ℕ₋₂) (k : ) (A : Type*) [H : is_trunc n A] :
is_trunc n (Ω[k] A) :=
begin
induction k with k IH,
{ exact H},
{ apply is_trunc_eq}
end
end is_trunc open is_trunc
namespace trunc
universe variable u
variable {A : Type.{u}}
/- characterization of equality in truncated types -/
protected definition code [unfold 3 4] (n : ℕ₋₂) (aa aa' : trunc n.+1 A) : trunctype.{u} n :=
by induction aa with a; induction aa' with a'; exact trunctype.mk' n (trunc n (a = a'))
protected definition encode [unfold 3 5] {n : ℕ₋₂} {aa aa' : trunc n.+1 A}
: aa = aa' → trunc.code n aa aa' :=
begin
intro p, induction p, induction aa with a, esimp, exact (tr idp)
end
protected definition decode {n : ℕ₋₂} (aa aa' : trunc n.+1 A) : trunc.code n aa aa' → aa = aa' :=
begin
induction aa' with a', induction aa with a,
esimp [trunc.code, trunc.rec_on], intro x,
induction x with p, exact ap tr p,
end
definition trunc_eq_equiv [constructor] (n : ℕ₋₂) (aa aa' : trunc n.+1 A)
: aa = aa' ≃ trunc.code n aa aa' :=
begin
fapply equiv.MK,
{ apply trunc.encode},
{ apply trunc.decode},
{ eapply (trunc.rec_on aa'), eapply (trunc.rec_on aa),
intro a a' x, esimp [trunc.code, trunc.rec_on] at x,
refine (@trunc.rec_on n _ _ x _ _),
intro x, apply is_trunc_eq,
intro p, induction p, reflexivity},
{ intro p, induction p, apply (trunc.rec_on aa), intro a, exact idp},
end
definition tr_eq_tr_equiv [constructor] (n : ℕ₋₂) (a a' : A)
: (tr a = tr a' :> trunc n.+1 A) ≃ trunc n (a = a') :=
!trunc_eq_equiv
/- encode preserves concatenation -/
definition trunc_functor2 [unfold 6 7] {n : ℕ₋₂} {A B C : Type} (f : A → B → C)
(x : trunc n A) (y : trunc n B) : trunc n C :=
by induction x with a; induction y with b; exact tr (f a b)
definition trunc_concat [unfold 6 7] {n : ℕ₋₂} {A : Type} {a₁ a₂ a₃ : A}
(p : trunc n (a₁ = a₂)) (q : trunc n (a₂ = a₃)) : trunc n (a₁ = a₃) :=
trunc_functor2 concat p q
definition code_mul {n : ℕ₋₂} {aa₁ aa₂ aa₃ : trunc n.+1 A}
(g : trunc.code n aa₁ aa₂) (h : trunc.code n aa₂ aa₃) : trunc.code n aa₁ aa₃ :=
begin
induction aa₁ with a₁, induction aa₂ with a₂, induction aa₃ with a₃,
esimp at *, apply trunc_concat g h,
end
definition encode_con' {n : ℕ₋₂} {aa₁ aa₂ aa₃ : trunc n.+1 A} (p : aa₁ = aa₂) (q : aa₂ = aa₃)
: trunc.encode (p ⬝ q) = code_mul (trunc.encode p) (trunc.encode q) :=
begin
induction p, induction q, induction aa₁ with a₁, reflexivity
end
definition encode_con {n : ℕ₋₂} {a₁ a₂ a₃ : A} (p : tr a₁ = tr a₂ :> trunc (n.+1) A)
(q : tr a₂ = tr a₃ :> trunc (n.+1) A)
: trunc.encode (p ⬝ q) = trunc_concat (trunc.encode p) (trunc.encode q) :=
encode_con' p q
/- the principle of unique choice -/
definition unique_choice {P : A → Type} [H : Πa, is_prop (P a)] (f : Πa, ∥ P a ∥) (a : A)
: P a :=
!trunc_equiv (f a)
/- transport over a truncated family -/
definition trunc_transport {a a' : A} {P : A → Type} (p : a = a') (n : ℕ₋₂) (x : P a)
: transport (λa, trunc n (P a)) p (tr x) = tr (p ▸ x) :=
by induction p; reflexivity
/- pathover over a truncated family -/
definition trunc_pathover {A : Type} {B : A → Type} {n : ℕ₋₂} {a a' : A} {p : a = a'}
{b : B a} {b' : B a'} (q : b =[p] b') : @tr n _ b =[p] @tr n _ b' :=
by induction q; constructor
/- truncations preserve truncatedness -/
definition is_trunc_trunc_of_is_trunc [instance] [priority 500] (A : Type)
(n m : ℕ₋₂) [H : is_trunc n A] : is_trunc n (trunc m A) :=
begin
revert A m H, eapply (trunc_index.rec_on n),
{ clear n, intro A m H, apply is_contr_equiv_closed,
{ apply equiv.symm, apply trunc_equiv, apply (@is_trunc_of_le _ -2), apply minus_two_le} },
{ clear n, intro n IH A m H, induction m with m,
{ apply (@is_trunc_of_le _ -2), apply minus_two_le},
{ apply is_trunc_succ_intro, intro aa aa',
apply (@trunc.rec_on _ _ _ aa (λy, !is_trunc_succ_of_is_prop)),
eapply (@trunc.rec_on _ _ _ aa' (λy, !is_trunc_succ_of_is_prop)),
intro a a', apply (is_trunc_equiv_closed_rev),
{ apply tr_eq_tr_equiv},
{ exact (IH _ _ _)}}}
end
/- equivalences between truncated types (see also hit.trunc) -/
definition trunc_trunc_equiv_left [constructor] (A : Type) (n m : ℕ₋₂) (H : n ≤ m)
: trunc n (trunc m A) ≃ trunc n A :=
begin
note H2 := is_trunc_of_le (trunc n A) H,
fapply equiv.MK,
{ intro x, induction x with x, induction x with x, exact tr x},
{ intro x, induction x with x, exact tr (tr x)},
{ intro x, induction x with x, reflexivity},
{ intro x, induction x with x, induction x with x, reflexivity}
end
definition trunc_trunc_equiv_right [constructor] (A : Type) (n m : ℕ₋₂) (H : n ≤ m)
: trunc m (trunc n A) ≃ trunc n A :=
begin
apply trunc_equiv,
exact is_trunc_of_le _ H,
end
definition trunc_equiv_trunc_of_le {n m : ℕ₋₂} {A B : Type} (H : n ≤ m)
(f : trunc m A ≃ trunc m B) : trunc n A ≃ trunc n B :=
(trunc_trunc_equiv_left A _ _ H)⁻¹ᵉ ⬝e trunc_equiv_trunc n f ⬝e trunc_trunc_equiv_left B _ _ H
definition trunc_trunc_equiv_trunc_trunc [constructor] (n m : ℕ₋₂) (A : Type)
: trunc n (trunc m A) ≃ trunc m (trunc n A) :=
begin
fapply equiv.MK: intro x; induction x with x; induction x with x,
{ exact tr (tr x)},
{ exact tr (tr x)},
{ reflexivity},
{ reflexivity}
end
/- trunc_functor preserves surjectivity -/
definition is_surjective_trunc_functor {A B : Type} (n : ℕ₋₂) (f : A → B) [H : is_surjective f]
: is_surjective (trunc_functor n f) :=
begin
cases n with n: intro b,
{ exact tr (fiber.mk !center !is_prop.elim)},
{ refine @trunc.rec _ _ _ _ _ b, {intro x, exact is_trunc_of_le _ !minus_one_le_succ},
clear b, intro b, induction H b with v, induction v with a p,
exact tr (fiber.mk (tr a) (ap tr p))}
end
/- the image of a map is the (-1)-truncated fiber -/
definition image [constructor] {A B : Type} (f : A → B) (b : B) : Prop := ∥ fiber f b ∥
definition image.mk [constructor] {A B : Type} {f : A → B} {b : B} (a : A) (p : f a = b)
: image f b :=
tr (fiber.mk a p)
/- truncation of pointed types and its functorial action -/
definition ptrunc [constructor] (n : ℕ₋₂) (X : Type*) : n-Type* :=
ptrunctype.mk (trunc n X) _ (tr pt)
definition ptrunc_functor [constructor] {X Y : Type*} (n : ℕ₋₂) (f : X →* Y)
: ptrunc n X →* ptrunc n Y :=
pmap.mk (trunc_functor n f) (ap tr (respect_pt f))
definition ptrunc_pequiv_ptrunc [constructor] (n : ℕ₋₂) {X Y : Type*} (H : X ≃* Y)
: ptrunc n X ≃* ptrunc n Y :=
pequiv_of_equiv (trunc_equiv_trunc n H) (ap tr (respect_pt H))
definition ptrunc_pequiv [constructor] (n : ℕ₋₂) (X : Type*) (H : is_trunc n X)
: ptrunc n X ≃* X :=
pequiv_of_equiv (trunc_equiv n X) idp
definition ptrunc_ptrunc_pequiv_left [constructor] (A : Type*) (n m : ℕ₋₂) (H : n ≤ m)
: ptrunc n (ptrunc m A) ≃* ptrunc n A :=
pequiv_of_equiv (trunc_trunc_equiv_left A n m H) idp
definition ptrunc_ptrunc_pequiv_right [constructor] (A : Type*) (n m : ℕ₋₂) (H : n ≤ m)
: ptrunc m (ptrunc n A) ≃* ptrunc n A :=
pequiv_of_equiv (trunc_trunc_equiv_right A n m H) idp
definition ptrunc_pequiv_ptrunc_of_le {n m : ℕ₋₂} {A B : Type*} (H : n ≤ m)
(f : ptrunc m A ≃* ptrunc m B) : ptrunc n A ≃* ptrunc n B :=
(ptrunc_ptrunc_pequiv_left A _ _ H)⁻¹ᵉ* ⬝e*
ptrunc_pequiv_ptrunc n f ⬝e*
ptrunc_ptrunc_pequiv_left B _ _ H
definition ptrunc_ptrunc_pequiv_ptrunc_ptrunc [constructor] (n m : ℕ₋₂) (A : Type*)
: ptrunc n (ptrunc m A) ≃ ptrunc m (ptrunc n A) :=
pequiv_of_equiv (trunc_trunc_equiv_trunc_trunc n m A) idp
definition loop_ptrunc_pequiv [constructor] (n : ℕ₋₂) (A : Type*) :
Ω (ptrunc (n+1) A) ≃* ptrunc n (Ω A) :=
pequiv_of_equiv !tr_eq_tr_equiv idp
definition loop_ptrunc_pequiv_con {n : ℕ₋₂} {A : Type*} (p q : Ω (ptrunc (n+1) A)) :
loop_ptrunc_pequiv n A (p ⬝ q) =
trunc_concat (loop_ptrunc_pequiv n A p) (loop_ptrunc_pequiv n A q) :=
encode_con p q
definition iterated_loop_ptrunc_pequiv (n : ℕ₋₂) (k : ) (A : Type*) :
Ω[k] (ptrunc (n+k) A) ≃* ptrunc n (Ω[k] A) :=
begin
revert n, induction k with k IH: intro n,
{ reflexivity},
{ refine _ ⬝e* loop_ptrunc_pequiv n (Ω[k] A),
rewrite [iterated_ploop_space_succ], apply loop_pequiv_loop,
refine _ ⬝e* IH (n.+1),
rewrite succ_add_nat}
end
definition ptrunc_functor_pcompose [constructor] {X Y Z : Type*} (n : ℕ₋₂) (g : Y →* Z)
(f : X →* Y) : ptrunc_functor n (g ∘* f) ~* ptrunc_functor n g ∘* ptrunc_functor n f :=
begin
fapply phomotopy.mk,
{ apply trunc_functor_compose},
{ esimp, refine !idp_con ⬝ _, refine whisker_right !ap_compose'⁻¹ᵖ _ ⬝ _,
esimp, refine whisker_right (ap_compose' tr g _) _ ⬝ _, exact !ap_con⁻¹},
end
definition ptrunc_functor_pid [constructor] (X : Type*) (n : ℕ₋₂) :
ptrunc_functor n (pid X) ~* pid (ptrunc n X) :=
begin
fapply phomotopy.mk,
{ apply trunc_functor_id},
{ reflexivity},
end
definition ptrunc_functor_pcast [constructor] {X Y : Type*} (n : ℕ₋₂) (p : X = Y) :
ptrunc_functor n (pcast p) ~* pcast (ap (ptrunc n) p) :=
begin
fapply phomotopy.mk,
{ intro x, esimp, refine !trunc_functor_cast ⬝ _, refine ap010 cast _ x,
refine !ap_compose'⁻¹ ⬝ !ap_compose'},
{ induction p, reflexivity},
end
end trunc open trunc
namespace function
variables {A B : Type}
definition is_surjective_of_is_equiv [instance] (f : A → B) [H : is_equiv f] : is_surjective f :=
λb, begin esimp, apply center end
definition is_equiv_equiv_is_embedding_times_is_surjective [constructor] (f : A → B)
: is_equiv f ≃ (is_embedding f × is_surjective f) :=
equiv_of_is_prop (λH, (_, _))
(λP, prod.rec_on P (λH₁ H₂, !is_equiv_of_is_surjective_of_is_embedding))
end function