lean2/library/data/countable.lean

317 lines
8.8 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: data.countable
Author: Leonardo de Moura
Type class for countable types
-/
import data.fintype data.list data.sum data.nat data.subtype
open option list nat
structure countable [class] (A : Type) :=
(pickle : A → nat) (unpickle : nat → option A) (picklek : ∀ a, unpickle (pickle a) = some a)
open countable
definition countable_fintype [instance] {A : Type} [h₁ : fintype A] [h₂ : decidable_eq A] : countable A :=
countable.mk
(λ a, find a (elements_of A))
(λ n, nth (elements_of A) n)
(λ a, find_nth (fintype.complete a))
definition countable_nat [instance] : countable nat :=
countable.mk (λ a, a) (λ n, some n) (λ a, rfl)
definition countable_option [instance] {A : Type} [h : countable A] : countable (option A) :=
countable.mk
(λ o, match o with
| some a := succ (pickle a)
| none := 0
end)
(λ n, if n = 0 then some none else some (unpickle A (pred n)))
(λ o,
begin
cases o with [a],
begin esimp end,
begin esimp, rewrite [if_neg !succ_ne_zero, pred_succ, countable.picklek] end
end)
section sum
variables {A B : Type}
variables [h₁ : countable A] [h₂ : countable B]
include h₁ h₂
definition pickle_sum : sum A B → nat
| (sum.inl a) := 2 * pickle a
| (sum.inr b) := 2 * pickle b + 1
definition unpickle_sum (n : nat) : option (sum A B) :=
if n mod 2 = 0 then
match unpickle A (n div 2) with
| some a := some (sum.inl a)
| none := none
end
else
match unpickle B ((n - 1) div 2) with
| some b := some (sum.inr b)
| none := none
end
open decidable
theorem unpickle_pickle_sum : ∀ s : sum A B, unpickle_sum (pickle_sum s) = some s
| (sum.inl a) :=
assert aux : 2 > 0, from dec_trivial,
begin
esimp [pickle_sum, unpickle_sum],
rewrite [mul_mod_right, if_pos (eq.refl 0), mul_div_cancel_left _ aux, countable.picklek]
end
| (sum.inr b) :=
assert aux₁ : 2 > 0, from dec_trivial,
assert aux₂ : 1 mod 2 = 1, by rewrite [modulo_def],
assert aux₃ : 1 ≠ 0, from dec_trivial,
begin
esimp [pickle_sum, unpickle_sum],
rewrite [add.comm, add_mul_mod_self_left aux₁, aux₂, if_neg aux₃, add_sub_cancel_left,
mul_div_cancel_left _ aux₁, countable.picklek]
end
definition countable_sum [instance] : countable (sum A B) :=
countable.mk
(λ s, pickle_sum s)
(λ n, unpickle_sum n)
(λ s, unpickle_pickle_sum s)
end sum
section prod
variables {A B : Type}
variables [h₁ : countable A] [h₂ : countable B]
include h₁ h₂
definition pickle_prod : A × B → nat
| (a, b) := mkpair (pickle a) (pickle b)
definition unpickle_prod (n : nat) : option (A × B) :=
match unpair n with
| (n₁, n₂) :=
match unpickle A n₁ with
| some a :=
match unpickle B n₂ with
| some b := some (a, b)
| none := none
end
| none := none
end
end
theorem unpickle_pickle_prod : ∀ p : A × B, unpickle_prod (pickle_prod p) = some p
| (a, b) :=
begin
esimp [pickle_prod, unpickle_prod, prod.cases_on],
rewrite [unpair_mkpair],
esimp,
rewrite [*countable.picklek]
end
definition countable_product [instance] : countable (A × B) :=
countable.mk
pickle_prod
unpickle_prod
unpickle_pickle_prod
end prod
section list
variables {A : Type}
variables [h : countable A]
include h
definition pickle_list_core : list A → nat
| [] := 0
| (a::l) := mkpair (pickle a) (pickle_list_core l)
theorem pickle_list_core_cons (a : A) (l : list A) : pickle_list_core (a::l) = mkpair (pickle a) (pickle_list_core l) :=
rfl
definition pickle_list (l : list A) : nat :=
mkpair (length l) (pickle_list_core l)
definition unpickle_list_core : nat → nat → option (list A)
| 0 v := some []
| (succ n) v :=
match unpair v with
| (v₁, v₂) :=
match unpickle A v₁ with
| some a :=
match unpickle_list_core n v₂ with
| some l := some (a::l)
| none := none
end
| none := none
end
end
theorem unpickle_list_core_succ (n v : nat) :
unpickle_list_core (succ n) v =
match unpair v with
| (v₁, v₂) :=
match unpickle A v₁ with
| some a :=
match unpickle_list_core n v₂ with
| some l := some (a::l)
| none := none
end
| none := none
end
end
:= rfl
definition unpickle_list (n : nat) : option (list A) :=
match unpair n with
| (l, v) := unpickle_list_core l v
end
theorem unpickle_pickle_list_core : ∀ l : list A, unpickle_list_core (length l) (pickle_list_core l) = some l
| [] := rfl
| (a::l) :=
begin
rewrite [pickle_list_core_cons, length_cons, add_one (length l), unpickle_list_core_succ],
rewrite [unpair_mkpair],
esimp [prod.cases_on],
rewrite [unpickle_pickle_list_core l],
rewrite [countable.picklek],
end
theorem unpickle_pickle_list (l : list A) : unpickle_list (pickle_list l) = some l :=
begin
esimp [pickle_list, unpickle_list],
rewrite [unpair_mkpair],
esimp [prod.cases_on],
apply unpickle_pickle_list_core
end
definition countable_list [instance] : countable (list A) :=
countable.mk
pickle_list
unpickle_list
unpickle_pickle_list
end list
definition countable_of_left_injection
{A B : Type} [h₁ : countable A]
(f : B → A) (finv : A → option B) (linv : ∀ b, finv (f b) = some b) : countable B :=
countable.mk
(λ b, pickle (f b))
(λ n,
match unpickle A n with
| some a := finv a
| none := none
end)
(λ b,
begin
esimp,
rewrite [countable.picklek],
esimp [option.cases_on],
rewrite [linv]
end)
/-
Choice function for countable types and decidable predicates.
We provide the following API
choose {A : Type} {p : A → Prop} [c : countable A] [d : decidable_pred p] : (∃ x, p x) → A :=
choose_spec {A : Type} {p : A → Prop} [c : countable A] [d : decidable_pred p] (ex : ∃ x, p x) : p (choose ex) :=
-/
section find_a
parameters {A : Type} {p : A → Prop} [c : countable A] [d : decidable_pred p]
include c
include d
private definition pn (n : nat) : Prop :=
match unpickle A n with
| some a := p a
| none := false
end
private definition decidable_pn : decidable_pred pn :=
λ n,
match unpickle A n with
| some a := λ e : unpickle A n = some a,
match d a with
| decidable.inl t :=
begin
unfold pn, rewrite e, esimp [option.cases_on],
exact (decidable.inl t)
end
| decidable.inr f :=
begin
unfold pn, rewrite e, esimp [option.cases_on],
exact (decidable.inr f)
end
end
| none := λ e : unpickle A n = none,
begin
unfold pn, rewrite e, esimp [option.cases_on],
exact decidable_false
end
end (eq.refl (unpickle A n))
private definition ex_pn_of_ex : (∃ x, p x) → (∃ x, pn x) :=
assume ex,
obtain (w : A) (pw : p w), from ex,
exists.intro (pickle w)
begin
unfold pn, rewrite [picklek], esimp, exact pw
end
private lemma unpickle_ne_none_of_pn {n : nat} : pn n → unpickle A n ≠ none :=
assume pnn e,
begin
rewrite [▸ (match unpickle A n with | some a := p a | none := false end) at pnn],
rewrite [e at pnn], esimp [option.cases_on] at pnn,
exact (false.elim pnn)
end
open subtype
private lemma of_nat (n : nat) : pn n → { a : A | p a } :=
match unpickle A n with
| some a := λ (e : unpickle A n = some a),
begin
unfold pn, rewrite e, esimp [option.cases_on], intro pa,
exact (tag a pa)
end
| none := λ (e : unpickle A n = none) h, absurd e (unpickle_ne_none_of_pn h)
end (eq.refl (unpickle A n))
private definition find_a : (∃ x, p x) → {a : A | p a} :=
assume ex : ∃ x, p x,
have exn : ∃ x, pn x, from ex_pn_of_ex ex,
let r : nat := @nat.choose pn decidable_pn exn in
have pnr : pn r, from @nat.choose_spec pn decidable_pn exn,
of_nat r pnr
end find_a
namespace countable
open subtype
definition choose {A : Type} {p : A → Prop} [c : countable A] [d : decidable_pred p] : (∃ x, p x) → A :=
assume ex, elt_of (find_a ex)
theorem choose_spec {A : Type} {p : A → Prop} [c : countable A] [d : decidable_pred p] (ex : ∃ x, p x) : p (choose ex) :=
has_property (find_a ex)
theorem axiom_of_choice {A : Type} {B : A → Type} {R : Π x, B x → Prop} [c : Π a, countable (B a)] [d : ∀ x y, decidable (R x y)]
: (∀x, ∃y, R x y) → ∃f, ∀x, R x (f x) :=
assume H,
have H₁ : ∀x, R x (choose (H x)), from take x, choose_spec (H x),
exists.intro _ H₁
theorem skolem {A : Type} {B : A → Type} {P : Π x, B x → Prop} [c : Π a, countable (B a)] [d : ∀ x y, decidable (P x y)]
: (∀x, ∃y, P x y) ↔ ∃f, (∀x, P x (f x)) :=
iff.intro
(assume H : (∀x, ∃y, P x y), axiom_of_choice H)
(assume H : (∃f, (∀x, P x (f x))),
take x, obtain (fw : ∀x, B x) (Hw : ∀x, P x (fw x)), from H,
exists.intro (fw x) (Hw x))
end countable