lean2/hott/homotopy/homotopy_group.hlean
Floris van Doorn 9a17a244c9 move more results and make arguments explicit
More results from the Spectral repository are moved to this library
Also make various type-class arguments of truncatedness and equivalences which were hard to synthesize explicit
2018-09-11 17:06:08 +02:00

339 lines
14 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2016 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn, Clive Newstead
-/
import .LES_of_homotopy_groups .sphere .complex_hopf
open eq is_trunc trunc_index pointed algebra trunc nat is_conn fiber pointed unit group
namespace is_trunc
-- Lemma 8.3.1
theorem trivial_homotopy_group_of_is_trunc (A : Type*) {n k : } [is_trunc n A] (H : n < k)
: is_contr (π[k] A) :=
begin
apply is_trunc_trunc_of_is_trunc,
apply is_contr_loop_of_is_trunc,
refine @is_trunc_of_le A n _ _ _,
apply trunc_index.le_of_succ_le_succ,
rewrite [succ_sub_two_succ k],
exact of_nat_le_of_nat H,
end
theorem trivial_ghomotopy_group_of_is_trunc (A : Type*) (n k : ) [is_trunc n A] (H : n ≤ k)
: is_contr (πg[k+1] A) :=
trivial_homotopy_group_of_is_trunc A (lt_succ_of_le H)
-- Lemma 8.3.2
theorem trivial_homotopy_group_of_is_conn (A : Type*) {k n : } (H : k ≤ n) [is_conn n A]
: is_contr (π[k] A) :=
begin
have H3 : is_contr (ptrunc k A), from is_conn_of_le A (of_nat_le_of_nat H),
have H4 : is_contr (Ω[k](ptrunc k A)), from !is_trunc_loopn_of_is_trunc,
exact is_trunc_equiv_closed_rev _ (equiv_of_pequiv (homotopy_group_pequiv_loop_ptrunc k A)) _
end
-- Corollary 8.3.3
open sphere sphere.ops
theorem homotopy_group_sphere_le (n k : ) (H : k < n) : is_contr (π[k] (S n)) :=
begin
cases n with n,
{ exfalso, apply not_lt_zero, exact H},
{ have H2 : k ≤ n, from le_of_lt_succ H,
apply @(trivial_homotopy_group_of_is_conn _ H2) }
end
theorem is_contr_HG_fiber_of_is_connected {A B : Type*} (k n : ) (f : A →* B)
[H : is_conn_fun n f] (H2 : k ≤ n) : is_contr (π[k] (pfiber f)) :=
@(trivial_homotopy_group_of_is_conn (pfiber f) H2) (H pt)
/- Corollaries of the LES of homotopy groups -/
local attribute ab_group.to_group [coercion]
local attribute is_equiv_tinverse [instance]
open prod chain_complex group fin equiv function is_equiv lift
/-
Because of the construction of the LES this proof only gives us this result when
A and B live in the same universe (because Lean doesn't have universe cumulativity).
However, below we also proof that it holds for A and B in arbitrary universes.
-/
theorem is_equiv_π_of_is_connected'.{u} {A B : pType.{u}} {n k : } (f : A →* B)
(H2 : k ≤ n) [H : is_conn_fun n f] : is_equiv (π→[k] f) :=
begin
cases k with k,
{ /- k = 0 -/
change (is_equiv (trunc_functor 0 f)), apply is_equiv_trunc_functor_of_is_conn_fun,
refine is_conn_fun_of_le f (zero_le_of_nat n)},
{ /- k > 0 -/
have H2' : k ≤ n, from le.trans !self_le_succ H2,
exact LES_is_equiv_of_trivial f (succ k) 0
(@is_contr_HG_fiber_of_is_connected A B k n f H H2')
(@is_contr_HG_fiber_of_is_connected A B (succ k) n f H H2) },
end
theorem is_equiv_π_of_is_connected.{u v} {A : pType.{u}} {B : pType.{v}} {n k : } (f : A →* B)
(H2 : k ≤ n) [H : is_conn_fun n f] : is_equiv (π→[k] f) :=
begin
have π→[k] pdown.{v u} ∘* π→[k] (plift_functor f) ∘* π→[k] pup.{u v} ~* π→[k] f,
begin
refine pwhisker_left _ !homotopy_group_functor_pcompose⁻¹* ⬝* _,
refine !homotopy_group_functor_pcompose⁻¹* ⬝* _,
apply homotopy_group_functor_phomotopy, apply plift_functor_phomotopy
end,
have π→[k] pdown.{v u} ∘ π→[k] (plift_functor f) ∘ π→[k] pup.{u v} ~ π→[k] f, from this,
apply is_equiv.homotopy_closed,
{ exact this},
{ do 2 apply is_equiv_compose,
{ apply is_equiv_homotopy_group_functor, apply to_is_equiv !equiv_lift},
{ refine @(is_equiv_π_of_is_connected' _ H2) _, apply is_conn_fun_lift_functor},
{ apply is_equiv_homotopy_group_functor, apply to_is_equiv !equiv_lift⁻¹ᵉ}}
end
definition π_equiv_π_of_is_connected {A B : Type*} {n k : } (f : A →* B)
(H2 : k ≤ n) [H : is_conn_fun n f] : π[k] A ≃* π[k] B :=
pequiv_of_pmap (π→[k] f) (is_equiv_π_of_is_connected f H2)
-- TODO: prove this for A and B in different universe levels
theorem is_surjective_π_of_is_connected.{u} {A B : pType.{u}} (n : ) (f : A →* B)
[H : is_conn_fun n f] : is_surjective (π→[n + 1] f) :=
@is_surjective_of_trivial _
(LES_of_homotopy_groups f) _
(is_exact_LES_of_homotopy_groups f (n, 2))
(@is_contr_HG_fiber_of_is_connected A B n n f H !le.refl)
/-
Theorem 8.8.3: Whitehead's principle and its corollaries
-/
definition whitehead_principle (n : ℕ₋₂) {A B : Type}
[HA : is_trunc n A] [HB : is_trunc n B] (f : A → B) (H' : is_equiv (trunc_functor 0 f))
(H : Πa k, is_equiv (π→[k + 1] (pmap_of_map f a))) : is_equiv f :=
begin
revert A B HA HB f H' H, induction n with n IH: intros,
{ exact is_equiv_of_is_contr _ _ _ },
have Πa, is_equiv (Ω→ (pmap_of_map f a)),
begin
intro a,
apply IH, do 2 (esimp; exact _),
{ rexact H a 0},
intro p k,
have is_equiv (π→[k + 1] (Ω→(pmap_of_map f a))),
from is_equiv_homotopy_group_functor_ap1 (k+1) (pmap_of_map f a),
have Π(b : A) (p : a = b),
is_equiv (pmap.to_fun (π→[k + 1] (pmap_of_map (ap f) p))),
begin
intro b p, induction p, refine is_equiv.homotopy_closed _ _ this,
refine homotopy_group_functor_phomotopy _ _,
apply ap1_pmap_of_map
end,
have is_equiv (homotopy_group_pequiv _
(pequiv_of_eq_pt (!idp_con⁻¹ : ap f p = Ω→ (pmap_of_map f a) p)) ∘
pmap.to_fun (π→[k + 1] (pmap_of_map (ap f) p))),
begin
apply is_equiv_compose, exact this a p,
exact is_equiv_trunc_functor _ _ _
end,
refine is_equiv.homotopy_closed _ _ this,
refine !homotopy_group_functor_pcompose⁻¹* ⬝* _,
apply homotopy_group_functor_phomotopy,
fapply phomotopy.mk,
{ esimp, intro q, refine !idp_con⁻¹},
{ esimp, refine !idp_con⁻¹},
end,
apply is_equiv_of_is_equiv_ap1_of_is_equiv_trunc
end
definition whitehead_principle_pointed (n : ℕ₋₂) {A B : Type*}
[HA : is_trunc n A] [HB : is_trunc n B] [is_conn 0 A] (f : A →* B)
(H : Πk, is_equiv (π→[k] f)) : is_equiv f :=
begin
apply whitehead_principle n, rexact H 0,
intro a k, revert a, apply is_conn.elim -1,
have is_equiv (π→[k + 1] (pointed_eta_pequiv B ⬝e* (pequiv_of_eq_pt (respect_pt f))⁻¹ᵉ*)
∘* π→[k + 1] f ∘* π→[k + 1] (pointed_eta_pequiv A)⁻¹ᵉ*),
begin
apply is_equiv_compose
(π→[k + 1] (pointed_eta_pequiv B ⬝e* (pequiv_of_eq_pt (respect_pt f))⁻¹ᵉ*)),
refine is_equiv_compose (π→[k + 1] f) _ _ _,
all_goals exact is_equiv_homotopy_group_functor _ _ _,
end,
refine is_equiv.homotopy_closed _ _ this,
apply to_homotopy,
refine pwhisker_left _ !homotopy_group_functor_pcompose⁻¹* ⬝* _,
refine !homotopy_group_functor_pcompose⁻¹* ⬝* _,
apply homotopy_group_functor_phomotopy, apply phomotopy_pmap_of_map
end
open pointed.ops
definition is_contr_of_trivial_homotopy (n : ℕ₋₂) (A : Type) [is_trunc n A] [is_conn 0 A]
(H : Πk a, is_contr (π[k] (pointed.MK A a))) : is_contr A :=
begin
refine is_trunc_is_equiv_closed_rev _ (λa, ⋆) _ _,
apply whitehead_principle n,
{ apply is_equiv_trunc_functor_of_is_conn_fun, apply is_conn_fun_to_unit_of_is_conn },
intro a k,
refine is_equiv_of_is_contr _ _ _,
exact trivial_homotopy_group_of_is_trunc _ !zero_lt_succ,
end
definition is_contr_of_trivial_homotopy_nat (n : ) (A : Type) [is_trunc n A] [is_conn 0 A]
(H : Πk a, k ≤ n → is_contr (π[k] (pointed.MK A a))) : is_contr A :=
begin
apply is_contr_of_trivial_homotopy n,
intro k a, apply @lt_ge_by_cases _ _ n k,
{ intro H', exact trivial_homotopy_group_of_is_trunc _ H'},
{ intro H', exact H k a H'}
end
definition is_contr_of_trivial_homotopy_pointed (n : ℕ₋₂) (A : Type*) [is_trunc n A]
(H : Πk, is_contr (π[k] A)) : is_contr A :=
begin
have is_conn 0 A, proof H 0 qed,
fapply is_contr_of_trivial_homotopy n A,
intro k, apply is_conn.elim -1,
cases A with A a, exact H k
end
definition is_contr_of_trivial_homotopy_nat_pointed (n : ) (A : Type*) [is_trunc n A]
(H : Πk, k ≤ n → is_contr (π[k] A)) : is_contr A :=
begin
have is_conn 0 A, proof H 0 !zero_le qed,
fapply is_contr_of_trivial_homotopy_nat n A,
intro k a H', revert a, apply is_conn.elim -1,
cases A with A a, exact H k H'
end
definition is_trunc_of_trivial_homotopy {n : } {m : ℕ₋₂} {A : Type} (H : is_trunc m A)
(H2 : Πk a, k > n → is_contr (π[k] (pointed.MK A a))) : is_trunc n A :=
begin
refine is_trunc_is_equiv_closed_rev _ (@tr n A) _ _,
apply whitehead_principle m,
{ apply is_equiv_trunc_functor_of_is_conn_fun,
note z := is_conn_fun_tr n A,
apply is_conn_fun_of_le _ (of_nat_le_of_nat (zero_le n)), },
intro a k,
apply @nat.lt_ge_by_cases n (k+1),
{ intro H3, apply @is_equiv_of_is_contr, exact H2 _ _ H3,
refine @trivial_homotopy_group_of_is_trunc _ _ _ _ H3 },
{ intro H3, apply @(is_equiv_π_of_is_connected _ H3), apply is_conn_fun_tr }
end
definition is_trunc_of_trivial_homotopy_pointed {n : } {m : ℕ₋₂} {A : Type*} (H : is_trunc m A)
(Hconn : is_conn 0 A) (H2 : Πk, k > n → is_contr (π[k] A)) : is_trunc n A :=
begin
apply is_trunc_of_trivial_homotopy H,
intro k a H3, revert a, apply is_conn.elim -1,
cases A with A a₀, exact H2 k H3
end
definition is_trunc_of_is_trunc_succ {n : } {A : Type} (H : is_trunc (n.+1) A)
(H2 : Πa, is_contr (π[n+1] (pointed.MK A a))) : is_trunc n A :=
begin
apply is_trunc_of_trivial_homotopy H,
intro k a H3, induction H3 with k H3 IH, exact H2 a,
apply @trivial_homotopy_group_of_is_trunc _ (n+1) _ H, exact succ_le_succ H3
end
definition is_trunc_of_is_trunc_succ_pointed {n : } {A : Type*} (H : is_trunc (n.+1) A)
(Hconn : is_conn 0 A) (H2 : is_contr (π[n+1] A)) : is_trunc n A :=
begin
apply is_trunc_of_trivial_homotopy_pointed H Hconn,
intro k H3, induction H3 with k H3 IH, exact H2,
apply @trivial_homotopy_group_of_is_trunc _ (n+1) _ H, exact succ_le_succ H3
end
definition ab_group_homotopy_group_of_is_conn (n : ) (A : Type*) [H : is_conn 1 A] :
ab_group (π[n] A) :=
begin
have is_conn 0 A, from !is_conn_of_is_conn_succ,
cases n with n,
{ unfold [homotopy_group, ptrunc], exact ab_group_of_is_contr _ _ },
cases n with n,
{ unfold [homotopy_group, ptrunc], exact ab_group_of_is_contr _ _ },
exact ab_group_homotopy_group (n+2) A
end
definition is_contr_of_trivial_homotopy' (n : ℕ₋₂) (A : Type) [is_trunc n A] [is_conn -1 A]
(H : Πk a, is_contr (π[k] (pointed.MK A a))) : is_contr A :=
begin
assert aa : trunc -1 A,
{ apply center },
assert H3 : is_conn 0 A,
{ induction aa with a, exact H 0 a },
exact is_contr_of_trivial_homotopy n A H
end
definition is_conn_of_trivial_homotopy (n : ℕ₋₂) (m : ) (A : Type) [is_trunc n A] [is_conn 0 A]
(H : Π(k : ) a, k ≤ m → is_contr (π[k] (pointed.MK A a))) : is_conn m A :=
begin
apply is_contr_of_trivial_homotopy_nat m (trunc m A),
intro k a H2,
induction a with a,
apply is_trunc_equiv_closed_rev,
exact equiv_of_pequiv (homotopy_group_ptrunc_of_le H2 (pointed.MK A a)),
exact H k a H2
end
definition is_conn_of_trivial_homotopy_pointed (n : ℕ₋₂) (m : ) (A : Type*) [is_trunc n A]
(H : Π(k : ), k ≤ m → is_contr (π[k] A)) : is_conn m A :=
begin
have is_conn 0 A, proof H 0 !zero_le qed,
apply is_conn_of_trivial_homotopy n m A,
intro k a H2, revert a, apply is_conn.elim -1,
cases A with A a, exact H k H2
end
definition is_conn_fun_of_equiv_on_homotopy_groups.{u} (n : ) {A B : Type.{u}} (f : A → B)
[is_equiv (trunc_functor 0 f)]
(H1 : Πa k, k ≤ n → is_equiv (homotopy_group_functor k (pmap_of_map f a)))
(H2 : Πa, is_surjective (homotopy_group_functor (succ n) (pmap_of_map f a))) : is_conn_fun n f :=
have H2' : Πa k, k ≤ n → is_surjective (homotopy_group_functor (succ k) (pmap_of_map f a)),
begin
intro a k H, cases H with n' H',
{ apply H2},
{ apply is_surjective_of_is_equiv, apply H1, exact succ_le_succ H'}
end,
have H3 : Πa, is_contr (ptrunc n (pfiber (pmap_of_map f a))),
begin
intro a, apply is_contr_of_trivial_homotopy_nat_pointed n,
{ intro k H, apply is_trunc_equiv_closed_rev, exact homotopy_group_ptrunc_of_le H _,
rexact @is_contr_of_is_embedding_of_is_surjective +3
(LES_of_homotopy_groups (pmap_of_map f a)) (k, 0)
(is_exact_LES_of_homotopy_groups _ _)
proof @(is_embedding_of_is_equiv _) (H1 a k H) qed
proof (H2' a k H) qed}
end,
show Πb, is_contr (trunc n (fiber f b)),
begin
intro b,
note p := right_inv (trunc_functor 0 f) (tr b), revert p,
induction (trunc_functor 0 f)⁻¹ (tr b), esimp, intro p,
induction !tr_eq_tr_equiv p with q,
rewrite -q, exact H3 a
end
end is_trunc
open is_trunc function
/- applications to infty-connected types and maps -/
namespace is_conn
definition is_conn_fun_inf_of_equiv_on_homotopy_groups.{u} {A B : Type.{u}} (f : A → B)
[is_equiv (trunc_functor 0 f)]
(H1 : Πa k, is_equiv (homotopy_group_functor k (pmap_of_map f a))) : is_conn_fun_inf f :=
begin
apply is_conn_fun_inf.mk_nat, intro n, apply is_conn_fun_of_equiv_on_homotopy_groups,
{ intro a k H, exact H1 a k},
{ intro a, apply is_surjective_of_is_equiv}
end
definition is_equiv_trunc_functor_of_is_conn_fun_inf.{u} (n : ℕ₋₂) {A B : Type.{u}} (f : A → B)
[is_conn_fun_inf f] : is_equiv (trunc_functor n f) :=
_
definition is_equiv_homotopy_group_functor_of_is_conn_fun_inf.{u} {A B : pType.{u}} (f : A →* B)
[is_conn_fun_inf f] (a : A) (k : ) : is_equiv (homotopy_group_functor k f) :=
is_equiv_π_of_is_connected f (le.refl k)
end is_conn