24 lines
1.1 KiB
Text
24 lines
1.1 KiB
Text
prelude -- Correct version
|
|
check let bool := Type.{0},
|
|
and (p q : bool) := ∀ c : bool, (p → q → c) → c,
|
|
infixl `∧`:25 := and,
|
|
and_intro (p q : bool) (H1 : p) (H2 : q) : p ∧ q
|
|
:= λ (c : bool) (H : p → q → c), H H1 H2,
|
|
and_elim_left (p q : bool) (H : p ∧ q) : p
|
|
:= H p (λ (H1 : p) (H2 : q), H1),
|
|
and_elim_right (p q : bool) (H : p ∧ q) : q
|
|
:= H q (λ (H1 : p) (H2 : q), H2)
|
|
in and_intro
|
|
|
|
-- TODO(Leo): fix expected output as soon as elaborator starts checking let-expression type again
|
|
|
|
check let bool := Type.{0},
|
|
and (p q : bool) := ∀ c : bool, (p → q → c) → c,
|
|
infixl `∧`:25 := and,
|
|
and_intro (p q : bool) (H1 : p) (H2 : q) : q ∧ p
|
|
:= λ (c : bool) (H : p → q → c), H H1 H2,
|
|
and_elim_left (p q : bool) (H : p ∧ q) : p
|
|
:= H p (λ (H1 : p) (H2 : q), H1),
|
|
and_elim_right (p q : bool) (H : p ∧ q) : q
|
|
:= H q (λ (H1 : p) (H2 : q), H2)
|
|
in and_intro
|