lean2/library/init/reserved_notation.lean

225 lines
7.3 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura, Jeremy Avigad, Floris van Doorn
-/
prelude
import init.datatypes
notation `assume` binders `,` r:(scoped f, f) := r
notation `take` binders `,` r:(scoped f, f) := r
structure has_zero [class] (A : Type) := (zero : A)
structure has_one [class] (A : Type) := (one : A)
structure has_add [class] (A : Type) := (add : A → A → A)
structure has_mul [class] (A : Type) := (mul : A → A → A)
structure has_inv [class] (A : Type) := (inv : A → A)
structure has_neg [class] (A : Type) := (neg : A → A)
structure has_sub [class] (A : Type) := (sub : A → A → A)
structure has_div [class] (A : Type) := (div : A → A → A)
structure has_dvd [class] (A : Type) := (dvd : A → A → Prop)
structure has_mod [class] (A : Type) := (mod : A → A → A)
structure has_le [class] (A : Type) := (le : A → A → Prop)
structure has_lt [class] (A : Type) := (lt : A → A → Prop)
definition zero {A : Type} [s : has_zero A] : A := has_zero.zero A
definition one {A : Type} [s : has_one A] : A := has_one.one A
definition add {A : Type} [s : has_add A] : A → A → A := has_add.add
definition mul {A : Type} [s : has_mul A] : A → A → A := has_mul.mul
definition sub {A : Type} [s : has_sub A] : A → A → A := has_sub.sub
definition div {A : Type} [s : has_div A] : A → A → A := has_div.div
definition dvd {A : Type} [s : has_dvd A] : A → A → Prop := has_dvd.dvd
definition mod {A : Type} [s : has_mod A] : A → A → A := has_mod.mod
definition neg {A : Type} [s : has_neg A] : A → A := has_neg.neg
definition inv {A : Type} [s : has_inv A] : A → A := has_inv.inv
definition le {A : Type} [s : has_le A] : A → A → Prop := has_le.le
definition lt {A : Type} [s : has_lt A] : A → A → Prop := has_lt.lt
definition ge [reducible] {A : Type} [s : has_le A] (a b : A) : Prop := le b a
definition gt [reducible] {A : Type} [s : has_lt A] (a b : A) : Prop := lt b a
definition bit0 {A : Type} [s : has_add A] (a : A) : A := add a a
definition bit1 {A : Type} [s₁ : has_one A] [s₂ : has_add A] (a : A) : A := add (bit0 a) one
definition num_has_zero [reducible] [instance] : has_zero num :=
has_zero.mk num.zero
definition num_has_one [reducible] [instance] : has_one num :=
has_one.mk (num.pos pos_num.one)
definition pos_num_has_one [reducible] [instance] : has_one pos_num :=
has_one.mk (pos_num.one)
namespace pos_num
open bool
definition is_one (a : pos_num) : bool :=
pos_num.rec_on a tt (λn r, ff) (λn r, ff)
definition pred (a : pos_num) : pos_num :=
pos_num.rec_on a one (λn r, bit0 n) (λn r, bool.rec_on (is_one n) (bit1 r) one)
definition size (a : pos_num) : pos_num :=
pos_num.rec_on a one (λn r, succ r) (λn r, succ r)
definition add (a b : pos_num) : pos_num :=
pos_num.rec_on a
succ
(λn f b, pos_num.rec_on b
(succ (bit1 n))
(λm r, succ (bit1 (f m)))
(λm r, bit1 (f m)))
(λn f b, pos_num.rec_on b
(bit1 n)
(λm r, bit1 (f m))
(λm r, bit0 (f m)))
b
end pos_num
definition pos_num_has_add [reducible] [instance] : has_add pos_num :=
has_add.mk pos_num.add
namespace num
open pos_num
definition add (a b : num) : num :=
num.rec_on a b (λpa, num.rec_on b (pos pa) (λpb, pos (pos_num.add pa pb)))
end num
definition num_has_add [reducible] [instance] : has_add num :=
has_add.mk num.add
definition std.priority.default : num := 1000
definition std.priority.max : num := 4294967295
namespace nat
protected definition prio := num.add std.priority.default 100
protected definition add (a b : nat) : nat :=
nat.rec a (λ b₁ r, succ r) b
definition of_num (n : num) : nat :=
num.rec zero
(λ n, pos_num.rec (succ zero) (λ n r, nat.add (nat.add r r) (succ zero)) (λ n r, nat.add r r) n) n
end nat
attribute pos_num_has_add pos_num_has_one num_has_zero num_has_one num_has_add
[instance] [priority nat.prio]
definition nat_has_zero [reducible] [instance] [priority nat.prio] : has_zero nat :=
has_zero.mk nat.zero
definition nat_has_one [reducible] [instance] [priority nat.prio] : has_one nat :=
has_one.mk (nat.succ (nat.zero))
definition nat_has_add [reducible] [instance] [priority nat.prio] : has_add nat :=
has_add.mk nat.add
/-
Global declarations of right binding strength
If a module reassigns these, it will be incompatible with other modules that adhere to these
conventions.
When hovering over a symbol, use "C-c C-k" to see how to input it.
-/
definition std.prec.max : num := 1024 -- the strength of application, identifiers, (, [, etc.
definition std.prec.arrow : num := 25
/-
The next definition is "max + 10". It can be used e.g. for postfix operations that should
be stronger than application.
-/
definition std.prec.max_plus :=
num.succ (num.succ (num.succ (num.succ (num.succ (num.succ (num.succ (num.succ (num.succ
(num.succ std.prec.max)))))))))
/- Logical operations and relations -/
reserve prefix `¬`:40
reserve prefix `~`:40
reserve infixr ` ∧ `:35
reserve infixr ` /\ `:35
reserve infixr ` \/ `:30
reserve infixr ` `:30
reserve infix ` <-> `:20
reserve infix ` ↔ `:20
reserve infix ` = `:50
reserve infix ` ≠ `:50
reserve infix ` ≈ `:50
reserve infix ` ~ `:50
reserve infix ` ≡ `:50
reserve infixr ` ∘ `:60 -- input with \comp
reserve postfix `⁻¹`:std.prec.max_plus -- input with \sy or \-1 or \inv
reserve infixl ` ⬝ `:75
reserve infixr ` ▸ `:75
reserve infixr ` ▹ `:75
/- types and type constructors -/
reserve infixl ` ⊎ `:25
reserve infixl ` × `:30
/- arithmetic operations -/
reserve infixl ` + `:65
reserve infixl ` - `:65
reserve infixl ` * `:70
reserve infixl ` / `:70
reserve infixl ` % `:70
reserve prefix `-`:100
reserve infix ` ^ `:80
reserve infix ` <= `:50
reserve infix ` ≤ `:50
reserve infix ` < `:50
reserve infix ` >= `:50
reserve infix ` ≥ `:50
reserve infix ` > `:50
/- boolean operations -/
reserve infixl ` && `:70
reserve infixl ` || `:65
/- set operations -/
reserve infix ` ∈ `:50
reserve infix ` ∉ `:50
reserve infixl ` ∩ `:70
reserve infixl ` `:65
reserve infix ` ⊆ `:50
reserve infix ` ⊇ `:50
reserve infix ` ' `:75 -- for the image of a set under a function
reserve infix ` '- `:75 -- for the preimage of a set under a function
/- other symbols -/
reserve infix ` `:50
reserve infixl ` ++ `:65
reserve infixr ` :: `:67
infix + := add
infix * := mul
infix - := sub
infix / := div
infix := dvd
infix % := mod
prefix - := neg
postfix ⁻¹ := inv
infix ≤ := le
infix ≥ := ge
infix < := lt
infix > := gt
notation [parsing_only] x ` +[`:65 A:0 `] `:0 y:65 := @add A _ x y
notation [parsing_only] x ` -[`:65 A:0 `] `:0 y:65 := @sub A _ x y
notation [parsing_only] x ` *[`:70 A:0 `] `:0 y:70 := @mul A _ x y
notation [parsing_only] x ` /[`:70 A:0 `] `:0 y:70 := @div A _ x y
notation [parsing_only] x ` [`:70 A:0 `] `:0 y:70 := @dvd A _ x y
notation [parsing_only] x ` %[`:70 A:0 `] `:0 y:70 := @mod A _ x y
notation [parsing_only] x ` ≤[`:50 A:0 `] `:0 y:50 := @le A _ x y
notation [parsing_only] x ` ≥[`:50 A:0 `] `:0 y:50 := @ge A _ x y
notation [parsing_only] x ` <[`:50 A:0 `] `:0 y:50 := @lt A _ x y
notation [parsing_only] x ` >[`:50 A:0 `] `:0 y:50 := @gt A _ x y