lean2/hott/algebra/category/constructions/sum.hlean
2016-02-22 11:15:38 -08:00

112 lines
4.4 KiB
Text

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn, Jakob von Raumer
Sum precategory and (TODO) category
-/
import ..category ..nat_trans types.sum
open eq sum is_trunc functor lift nat_trans
namespace category
--set_option pp.universes true
definition sum_hom.{u v w x} [unfold 5 6] {obC : Type.{u}} {obD : Type.{v}}
(C : precategory.{u w} obC) (D : precategory.{v x} obD)
: obC + obD → obC + obD → Type.{max w x} :=
sum.rec (λc, sum.rec (λc', lift (c ⟶ c')) (λd, lift empty))
(λd, sum.rec (λc, lift empty) (λd', lift (d ⟶ d')))
theorem is_set_sum_hom {obC : Type} {obD : Type}
(C : precategory obC) (D : precategory obD) (x y : obC + obD)
: is_set (sum_hom C D x y) :=
by induction x: induction y: esimp at *: exact _
local attribute is_set_sum_hom [instance]
definition precategory_sum [constructor] [instance] (obC obD : Type)
[C : precategory obC] [D : precategory obD] : precategory (obC + obD) :=
precategory.mk (sum_hom C D)
(λ a b c g f, begin induction a: induction b: induction c: esimp at *;
induction f with f; induction g with g; (contradiction | exact up (g ∘ f)) end)
(λ a, by induction a: exact up id)
(λ a b c d h g f,
abstract begin induction a: induction b: induction c: induction d:
esimp at *; induction f with f; induction g with g; induction h with h;
esimp at *; try contradiction: apply ap up !assoc end end)
(λ a b f, abstract begin induction a: induction b: esimp at *;
induction f with f; esimp; try contradiction: exact ap up !id_left end end)
(λ a b f, abstract begin induction a: induction b: esimp at *;
induction f with f; esimp; try contradiction: exact ap up !id_right end end)
definition Precategory_sum [constructor] (C D : Precategory) : Precategory :=
precategory.Mk (precategory_sum C D)
infixr ` +c `:65 := Precategory_sum
variables {C C' D D' : Precategory}
definition inl_functor [constructor] : C ⇒ C +c D :=
functor.mk inl
(λa b, up)
(λa, idp)
(λa b c g f, idp)
definition inr_functor [constructor] : D ⇒ C +c D :=
functor.mk inr
(λa b, up)
(λa, idp)
(λa b c g f, idp)
definition sum_functor [constructor] (F : C ⇒ D) (G : C' ⇒ D) : C +c C' ⇒ D :=
begin
fapply functor.mk: esimp,
{ intro a, induction a, exact F a, exact G a},
{ intro a b f, induction a: induction b: esimp at *;
induction f with f; esimp; try contradiction: (exact F f|exact G f)},
{ exact abstract begin intro a, induction a: esimp; apply respect_id end end},
{ intros a b c g f, induction a: induction b: induction c: esimp at *;
induction f with f; induction g with g; try contradiction:
esimp; apply respect_comp}, -- REPORT: abstracting this argument fails
end
infixr ` +f `:65 := sum_functor
definition sum_functor_eta (F : C +c C' ⇒ D) : F ∘f inl_functor +f F ∘f inr_functor = F :=
begin
fapply functor_eq: esimp,
{ intro a, induction a: reflexivity},
{ exact abstract begin esimp, intro a b f,
induction a: induction b: esimp at *; induction f with f; esimp;
try contradiction: apply id_leftright end end}
end
definition sum_functor_inl (F : C ⇒ D) (G : C' ⇒ D) : (F +f G) ∘f inl_functor = F :=
begin
fapply functor_eq,
reflexivity,
esimp, intros, apply id_leftright
end
definition sum_functor_inr (F : C ⇒ D) (G : C' ⇒ D) : (F +f G) ∘f inr_functor = G :=
begin
fapply functor_eq,
reflexivity,
esimp, intros, apply id_leftright
end
definition sum_functor_sum [constructor] (F : C ⇒ D) (G : C' ⇒ D') : C +c C' ⇒ D +c D' :=
(inl_functor ∘f F) +f (inr_functor ∘f G)
definition sum_nat_trans [constructor] {F F' : C ⇒ D} {G G' : C' ⇒ D} (η : F ⟹ F') (θ : G ⟹ G')
: F +f G ⟹ F' +f G' :=
begin
fapply nat_trans.mk,
{ intro a, induction a: esimp, exact η a, exact θ a},
{ intro a b f, induction a: induction b: esimp at *; induction f with f; esimp;
try contradiction: apply naturality}
end
infixr ` +n `:65 := sum_nat_trans
end category