45 lines
1.1 KiB
Text
45 lines
1.1 KiB
Text
/-
|
|
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
Module: data.examples.unencodable
|
|
Author: Leonardo de Moura
|
|
|
|
Small example showing that (nat → nat) is not encodable.
|
|
-/
|
|
import data.encodable
|
|
open nat encodable option
|
|
|
|
section
|
|
hypothesis nat_nat_encodable : encodable (nat → nat)
|
|
|
|
private definition decode_fun (n : nat) : option (nat → nat) :=
|
|
@decode (nat → nat) nat_nat_encodable n
|
|
|
|
private definition encode_fun (f : nat → nat) : nat :=
|
|
@encode (nat → nat) nat_nat_encodable f
|
|
|
|
private lemma encodek_fun : ∀ f : nat → nat, decode_fun (encode_fun f) = some f :=
|
|
λ f, !encodek
|
|
|
|
private definition f (n : nat) : nat :=
|
|
match decode_fun n with
|
|
| some g := succ (g n)
|
|
| none := 0
|
|
end
|
|
|
|
private definition v : nat := encode_fun f
|
|
|
|
private lemma f_eq : succ (f v) = f v :=
|
|
begin
|
|
change succ (f v) =
|
|
match decode_fun (encode_fun f) with
|
|
| some g := succ (g v)
|
|
| none := 0
|
|
end,
|
|
rewrite encodek_fun
|
|
end
|
|
end
|
|
|
|
theorem not_encodable_nat_arrow_nat : (encodable (nat → nat)) → false :=
|
|
assume h, absurd (f_eq h) succ_ne_self
|