lean2/hott/types/trunc.hlean
2015-09-11 23:35:21 -07:00

251 lines
9.6 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Jakob von Raumer. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
Properties of is_trunc and trunctype
-/
-- NOTE: the fact that (is_trunc n A) is a mere proposition is proved in .hprop_trunc
import types.pi types.eq types.equiv ..function
open eq sigma sigma.ops pi function equiv is_trunc.trunctype
is_equiv prod is_trunc.trunc_index pointed nat
namespace is_trunc
variables {A B : Type} {n : trunc_index}
/- theorems about trunctype -/
protected definition trunctype.sigma_char.{l} (n : trunc_index) :
(trunctype.{l} n) ≃ (Σ (A : Type.{l}), is_trunc n A) :=
begin
fapply equiv.MK,
{ intro A, exact (⟨carrier A, struct A⟩)},
{ intro S, exact (trunctype.mk S.1 S.2)},
{ intro S, induction S with S1 S2, reflexivity},
{ intro A, induction A with A1 A2, reflexivity},
end
definition trunctype_eq_equiv (n : trunc_index) (A B : n-Type) :
(A = B) ≃ (carrier A = carrier B) :=
calc
(A = B) ≃ (to_fun (trunctype.sigma_char n) A = to_fun (trunctype.sigma_char n) B)
: eq_equiv_fn_eq_of_equiv
... ≃ ((to_fun (trunctype.sigma_char n) A).1 = (to_fun (trunctype.sigma_char n) B).1)
: equiv.symm (!equiv_subtype)
... ≃ (carrier A = carrier B) : equiv.refl
definition is_trunc_is_embedding_closed (f : A → B) [Hf : is_embedding f] [HB : is_trunc n B]
(Hn : -1 ≤ n) : is_trunc n A :=
begin
induction n with n,
{exact !empty.elim Hn},
{apply is_trunc_succ_intro, intro a a',
fapply @is_trunc_is_equiv_closed_rev _ _ n (ap f)}
end
definition is_trunc_is_retraction_closed (f : A → B) [Hf : is_retraction f]
(n : trunc_index) [HA : is_trunc n A] : is_trunc n B :=
begin
revert A B f Hf HA,
induction n with n IH,
{ intro A B f Hf HA, induction Hf with g ε, fapply is_contr.mk,
{ exact f (center A)},
{ intro b, apply concat,
{ apply (ap f), exact (center_eq (g b))},
{ apply ε}}},
{ intro A B f Hf HA, induction Hf with g ε,
apply is_trunc_succ_intro, intro b b',
fapply (IH (g b = g b')),
{ intro q, exact ((ε b)⁻¹ ⬝ ap f q ⬝ ε b')},
{ apply (is_retraction.mk (ap g)),
{ intro p, induction p, {rewrite [↑ap, con.left_inv]}}},
{ apply is_trunc_eq}}
end
definition is_embedding_to_fun (A B : Type) : is_embedding (@to_fun A B) :=
λf f', !is_equiv_ap_to_fun
definition is_trunc_trunctype [instance] (n : trunc_index) : is_trunc n.+1 (n-Type) :=
begin
apply is_trunc_succ_intro, intro X Y,
fapply is_trunc_equiv_closed,
{apply equiv.symm, apply trunctype_eq_equiv},
fapply is_trunc_equiv_closed,
{apply equiv.symm, apply eq_equiv_equiv},
induction n,
{apply @is_contr_of_inhabited_hprop,
{apply is_trunc_is_embedding_closed,
{apply is_embedding_to_fun} ,
{exact unit.star}},
{apply equiv_of_is_contr_of_is_contr}},
{apply is_trunc_is_embedding_closed,
{apply is_embedding_to_fun},
{exact unit.star}}
end
/- theorems about decidable equality and axiom K -/
definition is_hset_of_axiom_K {A : Type} (K : Π{a : A} (p : a = a), p = idp) : is_hset A :=
is_hset.mk _ (λa b p q, eq.rec_on q K p)
theorem is_hset_of_relation.{u} {A : Type.{u}} (R : A → A → Type.{u})
(mere : Π(a b : A), is_hprop (R a b)) (refl : Π(a : A), R a a)
(imp : Π{a b : A}, R a b → a = b) : is_hset A :=
is_hset_of_axiom_K
(λa p,
have H2 : transport (λx, R a x → a = x) p (@imp a a) = @imp a a, from !apd,
have H3 : Π(r : R a a), transport (λx, a = x) p (imp r)
= imp (transport (λx, R a x) p r), from
to_fun (equiv.symm !heq_pi) H2,
have H4 : imp (refl a) ⬝ p = imp (refl a), from
calc
imp (refl a) ⬝ p = transport (λx, a = x) p (imp (refl a)) : transport_eq_r
... = imp (transport (λx, R a x) p (refl a)) : H3
... = imp (refl a) : is_hprop.elim,
cancel_left H4)
definition relation_equiv_eq {A : Type} (R : A → A → Type)
(mere : Π(a b : A), is_hprop (R a b)) (refl : Π(a : A), R a a)
(imp : Π{a b : A}, R a b → a = b) (a b : A) : R a b ≃ a = b :=
@equiv_of_is_hprop _ _ _
(@is_trunc_eq _ _ (is_hset_of_relation R mere refl @imp) a b)
imp
(λp, p ▸ refl a)
local attribute not [reducible]
definition is_hset_of_double_neg_elim {A : Type} (H : Π(a b : A), ¬¬a = b → a = b)
: is_hset A :=
is_hset_of_relation (λa b, ¬¬a = b) _ (λa n, n idp) H
section
open decidable
--this is proven differently in init.hedberg
definition is_hset_of_decidable_eq (A : Type) [H : decidable_eq A] : is_hset A :=
is_hset_of_double_neg_elim (λa b, by_contradiction)
end
definition is_trunc_of_axiom_K_of_leq {A : Type} (n : trunc_index) (H : -1 ≤ n)
(K : Π(a : A), is_trunc n (a = a)) : is_trunc (n.+1) A :=
@is_trunc_succ_intro _ _ (λa b, is_trunc_of_imp_is_trunc_of_leq H (λp, eq.rec_on p !K))
definition is_trunc_succ_of_is_trunc_loop (Hn : -1 ≤ n) (Hp : Π(a : A), is_trunc n (a = a))
: is_trunc (n.+1) A :=
begin
apply is_trunc_succ_intro, intros a a',
apply is_trunc_of_imp_is_trunc_of_leq Hn, intro p,
induction p, apply Hp
end
definition is_trunc_succ_iff_is_trunc_loop (A : Type) (Hn : -1 ≤ n) :
is_trunc (n.+1) A ↔ Π(a : A), is_trunc n (a = a) :=
iff.intro _ (is_trunc_succ_of_is_trunc_loop Hn)
definition is_trunc_iff_is_contr_loop_succ (n : ) (A : Type)
: is_trunc n A ↔ Π(a : A), is_contr (Ω[succ n](Pointed.mk a)) :=
begin
revert A, induction n with n IH,
{ intros, esimp [Iterated_loop_space], apply iff.intro,
{ intros H a, apply is_contr.mk idp, apply is_hprop.elim},
{ intro H, apply is_hset_of_axiom_K, intros, apply is_hprop.elim}},
{ intros, transitivity _, apply @is_trunc_succ_iff_is_trunc_loop n, constructor,
apply iff.pi_iff_pi, intros,
transitivity _, apply IH,
assert H : Πp : a = a, Ω(Pointed.mk p) = Ω(Pointed.mk (idpath a)),
{ intros, fapply Pointed_eq,
{ esimp, transitivity _,
apply eq_equiv_fn_eq_of_equiv (equiv_eq_closed_right _ p⁻¹),
esimp, apply eq_equiv_eq_closed, apply con.right_inv, apply con.right_inv},
{ esimp, apply con.left_inv}},
transitivity _,
apply iff.pi_iff_pi, intro p,
rewrite [↑Iterated_loop_space,H],
apply iff.refl,
apply iff.imp_iff, reflexivity}
end
definition is_trunc_iff_is_contr_loop (n : ) (A : Type)
: is_trunc (n.-2.+1) A ↔ (Π(a : A), is_contr (Ω[n](pointed.Mk a))) :=
begin
induction n with n,
{ esimp [sub_two,Iterated_loop_space], apply iff.intro,
intro H a, exact is_contr_of_inhabited_hprop a,
intro H, apply is_hprop_of_imp_is_contr, exact H},
{ apply is_trunc_iff_is_contr_loop_succ},
end
end is_trunc open is_trunc
namespace trunc
variable {A : Type}
protected definition code (n : trunc_index) (aa aa' : trunc n.+1 A) : n-Type :=
trunc.rec_on aa (λa, trunc.rec_on aa' (λa', trunctype.mk' n (trunc n (a = a'))))
protected definition encode (n : trunc_index) (aa aa' : trunc n.+1 A) : aa = aa' → trunc.code n aa aa' :=
begin
intro p, induction p, apply (trunc.rec_on aa),
intro a, esimp [trunc.code,trunc.rec_on], exact (tr idp)
end
protected definition decode (n : trunc_index) (aa aa' : trunc n.+1 A) : trunc.code n aa aa' → aa = aa' :=
begin
eapply (trunc.rec_on aa'), eapply (trunc.rec_on aa),
intro a a' x, esimp [trunc.code, trunc.rec_on] at x,
apply (trunc.rec_on x), intro p, exact (ap tr p)
end
definition trunc_eq_equiv (n : trunc_index) (aa aa' : trunc n.+1 A)
: aa = aa' ≃ trunc.code n aa aa' :=
begin
fapply equiv.MK,
{ apply trunc.encode},
{ apply trunc.decode},
{ eapply (trunc.rec_on aa'), eapply (trunc.rec_on aa),
intro a a' x, esimp [trunc.code, trunc.rec_on] at x,
refine (@trunc.rec_on n _ _ x _ _),
intro x, apply is_trunc_eq,
intro p, induction p, reflexivity},
{ intro p, induction p, apply (trunc.rec_on aa), intro a, exact idp},
end
definition tr_eq_tr_equiv (n : trunc_index) (a a' : A)
: (tr a = tr a' :> trunc n.+1 A) ≃ trunc n (a = a') :=
!trunc_eq_equiv
definition is_trunc_trunc_of_is_trunc [instance] [priority 500] (A : Type)
(n m : trunc_index) [H : is_trunc n A] : is_trunc n (trunc m A) :=
begin
revert A m H, eapply (trunc_index.rec_on n),
{ clear n, intro A m H, apply is_contr_equiv_closed,
{ apply equiv.symm, apply trunc_equiv, apply (@is_trunc_of_leq _ -2), exact unit.star} },
{ clear n, intro n IH A m H, induction m with m,
{ apply (@is_trunc_of_leq _ -2), exact unit.star},
{ apply is_trunc_succ_intro, intro aa aa',
apply (@trunc.rec_on _ _ _ aa (λy, !is_trunc_succ_of_is_hprop)),
eapply (@trunc.rec_on _ _ _ aa' (λy, !is_trunc_succ_of_is_hprop)),
intro a a', apply (is_trunc_equiv_closed_rev),
{ apply tr_eq_tr_equiv},
{ exact (IH _ _ _)}}}
end
open equiv.ops
definition unique_choice {P : A → Type} [H : Πa, is_hprop (P a)] (f : Πa, ∥ P a ∥) (a : A)
: P a :=
!trunc_equiv (f a)
end trunc open trunc
namespace function
variables {A B : Type}
definition is_surjective_of_is_equiv [instance] (f : A → B) [H : is_equiv f] : is_surjective f :=
λb, !center
definition is_equiv_equiv_is_embedding_times_is_surjective (f : A → B)
: is_equiv f ≃ (is_embedding f × is_surjective f) :=
equiv_of_is_hprop (λH, (_, _))
(λP, prod.rec_on P (λH₁ H₂, !is_equiv_of_is_surjective_of_is_embedding))
end function