62 lines
2 KiB
Text
62 lines
2 KiB
Text
/-
|
|
Copyright (c) 2014 Floris van Doorn. All rights reserved.
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
Author: Floris van Doorn
|
|
-/
|
|
open eq eq.ops
|
|
|
|
structure category [class] (ob : Type) : Type :=
|
|
(hom : ob → ob → Type)
|
|
(comp : Π⦃a b c : ob⦄, hom b c → hom a b → hom a c)
|
|
(ID : Π (a : ob), hom a a)
|
|
(assoc : Π ⦃a b c d : ob⦄ (h : hom c d) (g : hom b c) (f : hom a b),
|
|
comp h (comp g f) = comp (comp h g) f)
|
|
(id_left : Π ⦃a b : ob⦄ (f : hom a b), comp !ID f = f)
|
|
(id_right : Π ⦃a b : ob⦄ (f : hom a b), comp f !ID = f)
|
|
|
|
attribute category [multiple_instances]
|
|
|
|
namespace category
|
|
variables {ob : Type} [C : category ob]
|
|
variables {a b c d : ob}
|
|
include C
|
|
|
|
definition compose := @comp ob _
|
|
|
|
definition id [reducible] {a : ob} : hom a a := ID a
|
|
|
|
infixr `∘` := comp
|
|
infixl `⟶`:25 := hom -- input ⟶ using \--> (this is a different arrow than \-> (→))
|
|
|
|
variables {h : hom c d} {g : hom b c} {f : hom a b} {i : hom a a}
|
|
|
|
--the following is the only theorem for which "include C" is necessary if C is a variable (why?)
|
|
theorem id_compose (a : ob) : (ID a) ∘ id = id := !id_left
|
|
|
|
theorem left_id_unique (H : Π{b} {f : hom b a}, i ∘ f = f) : i = id :=
|
|
calc i = i ∘ id : id_right
|
|
... = id : H
|
|
|
|
theorem right_id_unique (H : Π{b} {f : hom a b}, f ∘ i = f) : i = id :=
|
|
calc i = id ∘ i : id_left
|
|
... = id : H
|
|
end category
|
|
|
|
inductive Category : Type := mk : Π (ob : Type), category ob → Category
|
|
|
|
namespace category
|
|
definition Mk {ob} (C) : Category := Category.mk ob C
|
|
definition MK (a b c d e f g) : Category := Category.mk a (category.mk b c d e f g)
|
|
|
|
definition objects [coercion] [reducible] (C : Category) : Type
|
|
:= Category.rec (fun c s, c) C
|
|
|
|
definition category_instance [instance] [coercion] (C : Category) : category (objects C)
|
|
:= Category.rec (fun c s, s) C
|
|
|
|
end category
|
|
|
|
open category
|
|
|
|
theorem Category.equal (C : Category) : Category.mk C C = C :=
|
|
Category.rec (λ ob c, rfl) C
|