lean2/library/hott/algebra/precategory/iso.lean
2014-12-05 22:21:49 -08:00

68 lines
2.3 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

-- Copyright (c) 2014 Jakob von Raumer. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Authors: Floris van Doorn, Jakob von Raumer
import .basic .morphism hott.types.prod
open path precategory sigma sigma.ops equiv is_equiv function truncation
open prod
namespace morphism
variables {ob : Type} [C : precategory ob] include C
variables {a b c : ob} {g : b ⟶ c} {f : a ⟶ b} {h : b ⟶ a}
-- "is_iso f" is equivalent to a certain sigma type
definition sigma_char (f : hom a b) :
(Σ (g : hom b a), (g ∘ f ≈ id) × (f ∘ g ≈ id)) ≃ is_iso f :=
begin
fapply (equiv.mk),
intro S, apply is_iso.mk,
exact (pr₁ S.2),
exact (pr₂ S.2),
fapply adjointify,
intro H, apply (is_iso.rec_on H), intros (g, η, ε),
exact (dpair g (pair η ε)),
intro H, apply (is_iso.rec_on H), intros (g, η, ε), apply idp,
intro S, apply (sigma.rec_on S), intros (g, ηε),
apply (prod.rec_on ηε), intros (η, ε), apply idp,
end
-- The structure for isomorphism can be characterized up to equivalence
-- by a sigma type.
definition sigma_is_iso_equiv ⦃a b : ob⦄ : (Σ (f : hom a b), is_iso f) ≃ (a ≅ b) :=
begin
fapply (equiv.mk),
intro S, apply isomorphic.mk, apply (S.2),
fapply adjointify,
intro p, apply (isomorphic.rec_on p), intros (f, H),
exact (dpair f H),
intro p, apply (isomorphic.rec_on p), intros (f, H), apply idp,
intro S, apply (sigma.rec_on S), intros (f, H), apply idp,
end
-- The statement "f is an isomorphism" is a mere proposition
definition is_hprop_of_is_iso : is_hset (is_iso f) :=
begin
apply trunc_equiv,
apply (equiv.to_is_equiv (!sigma_char)),
apply trunc_sigma,
apply (!homH),
intro g, apply trunc_prod,
repeat (apply succ_is_trunc; apply trunc_succ; apply (!homH)),
end
-- The type of isomorphisms between two objects is a set
definition is_hset_iso : is_hset (a ≅ b) :=
begin
apply trunc_equiv,
apply (equiv.to_is_equiv (!sigma_is_iso_equiv)),
apply trunc_sigma,
apply homH,
intro f, apply is_hprop_of_is_iso,
end
-- In a precategory, equal objects are isomorphic
definition iso_of_path (p : a ≈ b) : isomorphic a b :=
path.rec_on p (isomorphic.mk id)
end morphism