lean2/library/data/list/basic.lean
Leonardo de Moura bd03619b5c refactor(library/data/list/basic): test 'rec_inst_simp' blast strategy
recursor + instantiate [simp] lemmas + congruence closure
2015-12-31 13:03:47 -08:00

732 lines
26 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2014 Parikshit Khanna. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Parikshit Khanna, Jeremy Avigad, Leonardo de Moura, Floris van Doorn
Basic properties of lists.
-/
import logic tools.helper_tactics data.nat.order data.nat.sub
open eq.ops nat prod function option
inductive list (T : Type) : Type :=
| nil {} : list T
| cons : T → list T → list T
protected definition list.is_inhabited [instance] (A : Type) : inhabited (list A) :=
inhabited.mk list.nil
namespace list
notation h :: t := cons h t
notation `[` l:(foldr `, ` (h t, cons h t) nil `]`) := l
variable {T : Type}
lemma cons_ne_nil [simp] (a : T) (l : list T) : a::l ≠ [] :=
by contradiction
lemma head_eq_of_cons_eq {A : Type} {h₁ h₂ : A} {t₁ t₂ : list A} :
(h₁::t₁) = (h₂::t₂) → h₁ = h₂ :=
assume Peq, list.no_confusion Peq (assume Pheq Pteq, Pheq)
lemma tail_eq_of_cons_eq {A : Type} {h₁ h₂ : A} {t₁ t₂ : list A} :
(h₁::t₁) = (h₂::t₂) → t₁ = t₂ :=
assume Peq, list.no_confusion Peq (assume Pheq Pteq, Pteq)
lemma cons_inj {A : Type} {a : A} : injective (cons a) :=
take l₁ l₂, assume Pe, tail_eq_of_cons_eq Pe
/- append -/
definition append : list T → list T → list T
| [] l := l
| (h :: s) t := h :: (append s t)
notation l₁ ++ l₂ := append l₁ l₂
theorem append_nil_left [simp] (t : list T) : [] ++ t = t :=
rfl
theorem append_cons [simp] (x : T) (s t : list T) : (x::s) ++ t = x::(s ++ t) :=
rfl
theorem append_nil_right [simp] : ∀ (t : list T), t ++ [] = t :=
by rec_inst_simp
theorem append.assoc [simp] : ∀ (s t u : list T), s ++ t ++ u = s ++ (t ++ u) :=
by rec_inst_simp
/- length -/
definition length : list T → nat
| [] := 0
| (a :: l) := length l + 1
theorem length_nil [simp] : length (@nil T) = 0 :=
rfl
theorem length_cons [simp] (x : T) (t : list T) : length (x::t) = length t + 1 :=
rfl
theorem length_append [simp] : ∀ (s t : list T), length (s ++ t) = length s + length t :=
by rec_inst_simp
theorem eq_nil_of_length_eq_zero : ∀ {l : list T}, length l = 0 → l = [] :=
by rec_inst_simp
theorem ne_nil_of_length_eq_succ : ∀ {l : list T} {n : nat}, length l = succ n → l ≠ [] :=
by rec_inst_simp
-- add_rewrite length_nil length_cons
/- concat -/
definition concat : Π (x : T), list T → list T
| a [] := [a]
| a (b :: l) := b :: concat a l
theorem concat_nil [simp] (x : T) : concat x [] = [x] :=
rfl
theorem concat_cons [simp] (x y : T) (l : list T) : concat x (y::l) = y::(concat x l) :=
rfl
theorem concat_eq_append [simp] (a : T) : ∀ (l : list T), concat a l = l ++ [a] :=
by rec_inst_simp
theorem concat_ne_nil [simp] (a : T) : ∀ (l : list T), concat a l ≠ [] :=
by rec_inst_simp
theorem length_concat [simp] (a : T) : ∀ (l : list T), length (concat a l) = length l + 1 :=
by rec_inst_simp
theorem concat_append [simp] (a : T) : ∀ (l₁ l₂ : list T), concat a l₁ ++ l₂ = l₁ ++ a :: l₂ :=
by rec_inst_simp
theorem append_concat (a : T) : ∀(l₁ l₂ : list T), l₁ ++ concat a l₂ = concat a (l₁ ++ l₂) :=
by rec_inst_simp
/- last -/
definition last : Π l : list T, l ≠ [] → T
| [] h := absurd rfl h
| [a] h := a
| (a₁::a₂::l) h := last (a₂::l) !cons_ne_nil
lemma last_singleton [simp] (a : T) (h : [a] ≠ []) : last [a] h = a :=
rfl
lemma last_cons_cons [simp] (a₁ a₂ : T) (l : list T) (h : a₁::a₂::l ≠ []) : last (a₁::a₂::l) h = last (a₂::l) !cons_ne_nil :=
rfl
theorem last_congr {l₁ l₂ : list T} (h₁ : l₁ ≠ []) (h₂ : l₂ ≠ []) (h₃ : l₁ = l₂) : last l₁ h₁ = last l₂ h₂ :=
by subst l₁
theorem last_concat [simp] {x : T} : ∀ {l : list T} (h : concat x l ≠ []), last (concat x l) h = x
| [] h := rfl
| [a] h := rfl
| (a₁::a₂::l) h :=
begin
change last (a₁::a₂::concat x l) !cons_ne_nil = x,
rewrite last_cons_cons,
change last (concat x (a₂::l)) !concat_ne_nil = x,
apply last_concat
end
-- add_rewrite append_nil append_cons
/- reverse -/
definition reverse : list T → list T
| [] := []
| (a :: l) := concat a (reverse l)
theorem reverse_nil [simp] : reverse (@nil T) = [] :=
rfl
theorem reverse_cons [simp] (x : T) (l : list T) : reverse (x::l) = concat x (reverse l) :=
rfl
theorem reverse_singleton [simp] (x : T) : reverse [x] = [x] :=
rfl
theorem reverse_append [simp] : ∀ (s t : list T), reverse (s ++ t) = (reverse t) ++ (reverse s) :=
by rec_inst_simp
theorem reverse_reverse [simp] : ∀ (l : list T), reverse (reverse l) = l :=
by rec_inst_simp
theorem concat_eq_reverse_cons (x : T) (l : list T) : concat x l = reverse (x :: reverse l) :=
by inst_simp
theorem length_reverse : ∀ (l : list T), length (reverse l) = length l :=
by rec_inst_simp
/- head and tail -/
definition head [h : inhabited T] : list T → T
| [] := arbitrary T
| (a :: l) := a
theorem head_cons [simp] [h : inhabited T] (a : T) (l : list T) : head (a::l) = a :=
rfl
theorem head_append [simp] [h : inhabited T] (t : list T) : ∀ {s : list T}, s ≠ [] → head (s ++ t) = head s :=
by rec_inst_simp
definition tail : list T → list T
| [] := []
| (a :: l) := l
theorem tail_nil [simp] : tail (@nil T) = [] :=
rfl
theorem tail_cons [simp] (a : T) (l : list T) : tail (a::l) = l :=
rfl
theorem cons_head_tail [h : inhabited T] {l : list T} : l ≠ [] → (head l)::(tail l) = l :=
by rec_inst_simp
/- list membership -/
definition mem : T → list T → Prop
| a [] := false
| a (b :: l) := a = b mem a l
notation e ∈ s := mem e s
notation e ∉ s := ¬ e ∈ s
theorem mem_nil_iff (x : T) : x ∈ [] ↔ false :=
iff.rfl
theorem not_mem_nil (x : T) : x ∉ [] :=
iff.mp !mem_nil_iff
theorem mem_cons [simp] (x : T) (l : list T) : x ∈ x :: l :=
or.inl rfl
theorem mem_cons_of_mem (y : T) {x : T} {l : list T} : x ∈ l → x ∈ y :: l :=
assume H, or.inr H
theorem mem_cons_iff (x y : T) (l : list T) : x ∈ y::l ↔ (x = y x ∈ l) :=
iff.rfl
theorem eq_or_mem_of_mem_cons {x y : T} {l : list T} : x ∈ y::l → x = y x ∈ l :=
assume h, h
theorem mem_singleton {x a : T} : x ∈ [a] → x = a :=
suppose x ∈ [a], or.elim (eq_or_mem_of_mem_cons this)
(suppose x = a, this)
(suppose x ∈ [], absurd this !not_mem_nil)
theorem mem_of_mem_cons_of_mem {a b : T} {l : list T} : a ∈ b::l → b ∈ l → a ∈ l :=
assume ainbl binl, or.elim (eq_or_mem_of_mem_cons ainbl)
(suppose a = b, by substvars; exact binl)
(suppose a ∈ l, this)
theorem mem_or_mem_of_mem_append {x : T} {s t : list T} : x ∈ s ++ t → x ∈ s x ∈ t :=
list.induction_on s or.inr
(take y s,
assume IH : x ∈ s ++ t → x ∈ s x ∈ t,
suppose x ∈ y::s ++ t,
have x = y x ∈ s ++ t, from this,
have x = y x ∈ s x ∈ t, from or_of_or_of_imp_right this IH,
iff.elim_right or.assoc this)
theorem mem_append_of_mem_or_mem {x : T} {s t : list T} : x ∈ s x ∈ t → x ∈ s ++ t :=
list.induction_on s
(take H, or.elim H false.elim (assume H, H))
(take y s,
assume IH : x ∈ s x ∈ t → x ∈ s ++ t,
suppose x ∈ y::s x ∈ t,
or.elim this
(suppose x ∈ y::s,
or.elim (eq_or_mem_of_mem_cons this)
(suppose x = y, or.inl this)
(suppose x ∈ s, or.inr (IH (or.inl this))))
(suppose x ∈ t, or.inr (IH (or.inr this))))
theorem mem_append_iff (x : T) (s t : list T) : x ∈ s ++ t ↔ x ∈ s x ∈ t :=
iff.intro mem_or_mem_of_mem_append mem_append_of_mem_or_mem
theorem not_mem_of_not_mem_append_left {x : T} {s t : list T} : x ∉ s++t → x ∉ s :=
λ nxinst xins, absurd (mem_append_of_mem_or_mem (or.inl xins)) nxinst
theorem not_mem_of_not_mem_append_right {x : T} {s t : list T} : x ∉ s++t → x ∉ t :=
λ nxinst xint, absurd (mem_append_of_mem_or_mem (or.inr xint)) nxinst
theorem not_mem_append {x : T} {s t : list T} : x ∉ s → x ∉ t → x ∉ s++t :=
λ nxins nxint xinst, or.elim (mem_or_mem_of_mem_append xinst)
(λ xins, by contradiction)
(λ xint, by contradiction)
lemma length_pos_of_mem {a : T} : ∀ {l : list T}, a ∈ l → 0 < length l
| [] := assume Pinnil, by contradiction
| (b::l) := assume Pin, !zero_lt_succ
section
local attribute mem [reducible]
local attribute append [reducible]
theorem mem_split {x : T} {l : list T} : x ∈ l → ∃s t : list T, l = s ++ (x::t) :=
list.induction_on l
(suppose x ∈ [], false.elim (iff.elim_left !mem_nil_iff this))
(take y l,
assume IH : x ∈ l → ∃s t : list T, l = s ++ (x::t),
suppose x ∈ y::l,
or.elim (eq_or_mem_of_mem_cons this)
(suppose x = y,
exists.intro [] (!exists.intro (this ▸ rfl)))
(suppose x ∈ l,
obtain s (H2 : ∃t : list T, l = s ++ (x::t)), from IH this,
obtain t (H3 : l = s ++ (x::t)), from H2,
have y :: l = (y::s) ++ (x::t),
from H3 ▸ rfl,
!exists.intro (!exists.intro this)))
end
theorem mem_append_left {a : T} {l₁ : list T} (l₂ : list T) : a ∈ l₁ → a ∈ l₁ ++ l₂ :=
assume ainl₁, mem_append_of_mem_or_mem (or.inl ainl₁)
theorem mem_append_right {a : T} (l₁ : list T) {l₂ : list T} : a ∈ l₂ → a ∈ l₁ ++ l₂ :=
assume ainl₂, mem_append_of_mem_or_mem (or.inr ainl₂)
definition decidable_mem [instance] [H : decidable_eq T] (x : T) (l : list T) : decidable (x ∈ l) :=
list.rec_on l
(decidable.inr (not_of_iff_false !mem_nil_iff))
(take (h : T) (l : list T) (iH : decidable (x ∈ l)),
show decidable (x ∈ h::l), from
decidable.rec_on iH
(assume Hp : x ∈ l,
decidable.rec_on (H x h)
(suppose x = h,
decidable.inl (or.inl this))
(suppose x ≠ h,
decidable.inl (or.inr Hp)))
(suppose ¬x ∈ l,
decidable.rec_on (H x h)
(suppose x = h, decidable.inl (or.inl this))
(suppose x ≠ h,
have ¬(x = h x ∈ l), from
suppose x = h x ∈ l, or.elim this
(suppose x = h, by contradiction)
(suppose x ∈ l, by contradiction),
have ¬x ∈ h::l, from
iff.elim_right (not_iff_not_of_iff !mem_cons_iff) this,
decidable.inr this)))
theorem mem_of_ne_of_mem {x y : T} {l : list T} (H₁ : x ≠ y) (H₂ : x ∈ y :: l) : x ∈ l :=
or.elim (eq_or_mem_of_mem_cons H₂) (λe, absurd e H₁) (λr, r)
theorem ne_of_not_mem_cons {a b : T} {l : list T} : a ∉ b::l → a ≠ b :=
assume nin aeqb, absurd (or.inl aeqb) nin
theorem not_mem_of_not_mem_cons {a b : T} {l : list T} : a ∉ b::l → a ∉ l :=
assume nin nainl, absurd (or.inr nainl) nin
lemma not_mem_cons_of_ne_of_not_mem {x y : T} {l : list T} : x ≠ y → x ∉ l → x ∉ y::l :=
assume P1 P2, not.intro (assume Pxin, absurd (eq_or_mem_of_mem_cons Pxin) (not_or P1 P2))
lemma ne_and_not_mem_of_not_mem_cons {x y : T} {l : list T} : x ∉ y::l → x ≠ y ∧ x ∉ l :=
assume P, and.intro (ne_of_not_mem_cons P) (not_mem_of_not_mem_cons P)
definition sublist (l₁ l₂ : list T) := ∀ ⦃a : T⦄, a ∈ l₁ → a ∈ l₂
infix ⊆ := sublist
theorem nil_sub [simp] (l : list T) : [] ⊆ l :=
λ b i, false.elim (iff.mp (mem_nil_iff b) i)
theorem sub.refl [simp] (l : list T) : l ⊆ l :=
λ b i, i
theorem sub.trans {l₁ l₂ l₃ : list T} (H₁ : l₁ ⊆ l₂) (H₂ : l₂ ⊆ l₃) : l₁ ⊆ l₃ :=
λ b i, H₂ (H₁ i)
theorem sub_cons [simp] (a : T) (l : list T) : l ⊆ a::l :=
λ b i, or.inr i
theorem sub_of_cons_sub {a : T} {l₁ l₂ : list T} : a::l₁ ⊆ l₂ → l₁ ⊆ l₂ :=
λ s b i, s b (mem_cons_of_mem _ i)
theorem cons_sub_cons {l₁ l₂ : list T} (a : T) (s : l₁ ⊆ l₂) : (a::l₁) ⊆ (a::l₂) :=
λ b Hin, or.elim (eq_or_mem_of_mem_cons Hin)
(λ e : b = a, or.inl e)
(λ i : b ∈ l₁, or.inr (s i))
theorem sub_append_left [simp] (l₁ l₂ : list T) : l₁ ⊆ l₁++l₂ :=
λ b i, iff.mpr (mem_append_iff b l₁ l₂) (or.inl i)
theorem sub_append_right [simp] (l₁ l₂ : list T) : l₂ ⊆ l₁++l₂ :=
λ b i, iff.mpr (mem_append_iff b l₁ l₂) (or.inr i)
theorem sub_cons_of_sub (a : T) {l₁ l₂ : list T} : l₁ ⊆ l₂ → l₁ ⊆ (a::l₂) :=
λ (s : l₁ ⊆ l₂) (x : T) (i : x ∈ l₁), or.inr (s i)
theorem sub_app_of_sub_left (l l₁ l₂ : list T) : l ⊆ l₁ → l ⊆ l₁++l₂ :=
λ (s : l ⊆ l₁) (x : T) (xinl : x ∈ l),
have x ∈ l₁, from s xinl,
mem_append_of_mem_or_mem (or.inl this)
theorem sub_app_of_sub_right (l l₁ l₂ : list T) : l ⊆ l₂ → l ⊆ l₁++l₂ :=
λ (s : l ⊆ l₂) (x : T) (xinl : x ∈ l),
have x ∈ l₂, from s xinl,
mem_append_of_mem_or_mem (or.inr this)
theorem cons_sub_of_sub_of_mem {a : T} {l m : list T} : a ∈ m → l ⊆ m → a::l ⊆ m :=
λ (ainm : a ∈ m) (lsubm : l ⊆ m) (x : T) (xinal : x ∈ a::l), or.elim (eq_or_mem_of_mem_cons xinal)
(suppose x = a, by substvars; exact ainm)
(suppose x ∈ l, lsubm this)
theorem app_sub_of_sub_of_sub {l₁ l₂ l : list T} : l₁ ⊆ l → l₂ ⊆ l → l₁++l₂ ⊆ l :=
λ (l₁subl : l₁ ⊆ l) (l₂subl : l₂ ⊆ l) (x : T) (xinl₁l₂ : x ∈ l₁++l₂),
or.elim (mem_or_mem_of_mem_append xinl₁l₂)
(suppose x ∈ l₁, l₁subl this)
(suppose x ∈ l₂, l₂subl this)
/- find -/
section
variable [H : decidable_eq T]
include H
definition find : T → list T → nat
| a [] := 0
| a (b :: l) := if a = b then 0 else succ (find a l)
theorem find_nil [simp] (x : T) : find x [] = 0 :=
rfl
theorem find_cons (x y : T) (l : list T) : find x (y::l) = if x = y then 0 else succ (find x l) :=
rfl
theorem find_cons_of_eq {x y : T} (l : list T) : x = y → find x (y::l) = 0 :=
assume e, if_pos e
theorem find_cons_of_ne {x y : T} (l : list T) : x ≠ y → find x (y::l) = succ (find x l) :=
assume n, if_neg n
theorem find_of_not_mem {l : list T} {x : T} : ¬x ∈ l → find x l = length l :=
list.rec_on l
(suppose ¬x ∈ [], rfl)
(take y l,
assume iH : ¬x ∈ l → find x l = length l,
suppose ¬x ∈ y::l,
have ¬(x = y x ∈ l), from iff.elim_right (not_iff_not_of_iff !mem_cons_iff) this,
have ¬x = y ∧ ¬x ∈ l, from (iff.elim_left not_or_iff_not_and_not this),
calc
find x (y::l) = if x = y then 0 else succ (find x l) : !find_cons
... = succ (find x l) : if_neg (and.elim_left this)
... = succ (length l) : {iH (and.elim_right this)}
... = length (y::l) : !length_cons⁻¹)
lemma find_le_length : ∀ {a} {l : list T}, find a l ≤ length l
| a [] := !le.refl
| a (b::l) := decidable.rec_on (H a b)
(assume Peq, by rewrite [find_cons_of_eq l Peq]; exact !zero_le)
(assume Pne,
begin
rewrite [find_cons_of_ne l Pne, length_cons],
apply succ_le_succ, apply find_le_length
end)
lemma not_mem_of_find_eq_length : ∀ {a} {l : list T}, find a l = length l → a ∉ l
| a [] := assume Peq, !not_mem_nil
| a (b::l) := decidable.rec_on (H a b)
(assume Peq, by rewrite [find_cons_of_eq l Peq, length_cons]; contradiction)
(assume Pne,
begin
rewrite [find_cons_of_ne l Pne, length_cons, mem_cons_iff],
intro Plen, apply (not_or Pne),
exact not_mem_of_find_eq_length (succ.inj Plen)
end)
lemma find_lt_length {a} {l : list T} (Pin : a ∈ l) : find a l < length l :=
begin
apply nat.lt_of_le_and_ne,
apply find_le_length,
apply not.intro, intro Peq,
exact absurd Pin (not_mem_of_find_eq_length Peq)
end
end
/- nth element -/
section nth
definition nth : list T → nat → option T
| [] n := none
| (a :: l) 0 := some a
| (a :: l) (n+1) := nth l n
theorem nth_zero [simp] (a : T) (l : list T) : nth (a :: l) 0 = some a :=
rfl
theorem nth_succ [simp] (a : T) (l : list T) (n : nat) : nth (a::l) (succ n) = nth l n :=
rfl
theorem nth_eq_some : ∀ {l : list T} {n : nat}, n < length l → Σ a : T, nth l n = some a
| [] n h := absurd h !not_lt_zero
| (a::l) 0 h := ⟨a, rfl⟩
| (a::l) (succ n) h :=
have n < length l, from lt_of_succ_lt_succ h,
obtain (r : T) (req : nth l n = some r), from nth_eq_some this,
⟨r, by rewrite [nth_succ, req]⟩
open decidable
theorem find_nth [decidable_eq T] {a : T} : ∀ {l}, a ∈ l → nth l (find a l) = some a
| [] ain := absurd ain !not_mem_nil
| (b::l) ainbl := by_cases
(λ aeqb : a = b, by rewrite [find_cons_of_eq _ aeqb, nth_zero, aeqb])
(λ aneb : a ≠ b, or.elim (eq_or_mem_of_mem_cons ainbl)
(λ aeqb : a = b, absurd aeqb aneb)
(λ ainl : a ∈ l, by rewrite [find_cons_of_ne _ aneb, nth_succ, find_nth ainl]))
definition inth [h : inhabited T] (l : list T) (n : nat) : T :=
match nth l n with
| some a := a
| none := arbitrary T
end
theorem inth_zero [inhabited T] (a : T) (l : list T) : inth (a :: l) 0 = a :=
rfl
theorem inth_succ [inhabited T] (a : T) (l : list T) (n : nat) : inth (a::l) (n+1) = inth l n :=
rfl
end nth
section ith
definition ith : Π (l : list T) (i : nat), i < length l → T
| nil i h := absurd h !not_lt_zero
| (x::xs) 0 h := x
| (x::xs) (succ i) h := ith xs i (lt_of_succ_lt_succ h)
lemma ith_zero [simp] (a : T) (l : list T) (h : 0 < length (a::l)) : ith (a::l) 0 h = a :=
rfl
lemma ith_succ [simp] (a : T) (l : list T) (i : nat) (h : succ i < length (a::l))
: ith (a::l) (succ i) h = ith l i (lt_of_succ_lt_succ h) :=
rfl
end ith
open decidable
definition has_decidable_eq {A : Type} [H : decidable_eq A] : ∀ l₁ l₂ : list A, decidable (l₁ = l₂)
| [] [] := inl rfl
| [] (b::l₂) := inr (by contradiction)
| (a::l₁) [] := inr (by contradiction)
| (a::l₁) (b::l₂) :=
match H a b with
| inl Hab :=
match has_decidable_eq l₁ l₂ with
| inl He := inl (by congruence; repeat assumption)
| inr Hn := inr (by intro H; injection H; contradiction)
end
| inr Hnab := inr (by intro H; injection H; contradiction)
end
/- quasiequal a l l' means that l' is exactly l, with a added
once somewhere -/
section qeq
variable {A : Type}
inductive qeq (a : A) : list A → list A → Prop :=
| qhead : ∀ l, qeq a l (a::l)
| qcons : ∀ (b : A) {l l' : list A}, qeq a l l' → qeq a (b::l) (b::l')
open qeq
notation l' `≈`:50 a `|` l:50 := qeq a l l'
theorem qeq_app : ∀ (l₁ : list A) (a : A) (l₂ : list A), l₁++(a::l₂) ≈ a|l₁++l₂
| [] a l₂ := qhead a l₂
| (x::xs) a l₂ := qcons x (qeq_app xs a l₂)
theorem mem_head_of_qeq {a : A} {l₁ l₂ : list A} : l₁≈a|l₂ → a ∈ l₁ :=
take q, qeq.induction_on q
(λ l, !mem_cons)
(λ b l l' q r, or.inr r)
theorem mem_tail_of_qeq {a : A} {l₁ l₂ : list A} : l₁≈a|l₂ → ∀ x, x ∈ l₂ → x ∈ l₁ :=
take q, qeq.induction_on q
(λ l x i, or.inr i)
(λ b l l' q r x xinbl, or.elim (eq_or_mem_of_mem_cons xinbl)
(λ xeqb : x = b, xeqb ▸ mem_cons x l')
(λ xinl : x ∈ l, or.inr (r x xinl)))
theorem mem_cons_of_qeq {a : A} {l₁ l₂ : list A} : l₁≈a|l₂ → ∀ x, x ∈ l₁ → x ∈ a::l₂ :=
take q, qeq.induction_on q
(λ l x i, i)
(λ b l l' q r x xinbl', or.elim (eq_or_mem_of_mem_cons xinbl')
(λ xeqb : x = b, xeqb ▸ or.inr (mem_cons x l))
(λ xinl' : x ∈ l', or.elim (eq_or_mem_of_mem_cons (r x xinl'))
(λ xeqa : x = a, xeqa ▸ mem_cons x (b::l))
(λ xinl : x ∈ l, or.inr (or.inr xinl))))
theorem length_eq_of_qeq {a : A} {l₁ l₂ : list A} : l₁≈a|l₂ → length l₁ = succ (length l₂) :=
take q, qeq.induction_on q
(λ l, rfl)
(λ b l l' q r, by rewrite [*length_cons, r])
theorem qeq_of_mem {a : A} {l : list A} : a ∈ l → (∃l', l≈a|l') :=
list.induction_on l
(λ h : a ∈ nil, absurd h (not_mem_nil a))
(λ x xs r ainxxs, or.elim (eq_or_mem_of_mem_cons ainxxs)
(λ aeqx : a = x,
assert aux : ∃ l, x::xs≈x|l, from
exists.intro xs (qhead x xs),
by rewrite aeqx; exact aux)
(λ ainxs : a ∈ xs,
have ∃l', xs ≈ a|l', from r ainxs,
obtain (l' : list A) (q : xs ≈ a|l'), from this,
have x::xs ≈ a | x::l', from qcons x q,
exists.intro (x::l') this))
theorem qeq_split {a : A} {l l' : list A} : l'≈a|l → ∃l₁ l₂, l = l₁++l₂ ∧ l' = l₁++(a::l₂) :=
take q, qeq.induction_on q
(λ t,
have t = []++t ∧ a::t = []++(a::t), from and.intro rfl rfl,
exists.intro [] (exists.intro t this))
(λ b t t' q r,
obtain (l₁ l₂ : list A) (h : t = l₁++l₂ ∧ t' = l₁++(a::l₂)), from r,
have b::t = (b::l₁)++l₂ ∧ b::t' = (b::l₁)++(a::l₂),
begin
rewrite [and.elim_right h, and.elim_left h],
constructor, repeat reflexivity
end,
exists.intro (b::l₁) (exists.intro l₂ this))
theorem sub_of_mem_of_sub_of_qeq {a : A} {l : list A} {u v : list A} : a ∉ l → a::l ⊆ v → v≈a|u → l ⊆ u :=
λ (nainl : a ∉ l) (s : a::l ⊆ v) (q : v≈a|u) (x : A) (xinl : x ∈ l),
have x ∈ v, from s (or.inr xinl),
have x ∈ a::u, from mem_cons_of_qeq q x this,
or.elim (eq_or_mem_of_mem_cons this)
(suppose x = a, by substvars; contradiction)
(suppose x ∈ u, this)
end qeq
section firstn
variable {A : Type}
definition firstn : nat → list A → list A
| 0 l := []
| (n+1) [] := []
| (n+1) (a::l) := a :: firstn n l
lemma firstn_zero [simp] : ∀ (l : list A), firstn 0 l = [] :=
by intros; reflexivity
lemma firstn_nil [simp] : ∀ n, firstn n [] = ([] : list A)
| 0 := rfl
| (n+1) := rfl
lemma firstn_cons : ∀ n (a : A) (l : list A), firstn (succ n) (a::l) = a :: firstn n l :=
by intros; reflexivity
lemma firstn_all : ∀ (l : list A), firstn (length l) l = l
| [] := rfl
| (a::l) := begin unfold [length, firstn], rewrite firstn_all end
lemma firstn_all_of_ge : ∀ {n} {l : list A}, n ≥ length l → firstn n l = l
| 0 [] h := rfl
| 0 (a::l) h := absurd h (not_le_of_gt !succ_pos)
| (n+1) [] h := rfl
| (n+1) (a::l) h := begin unfold firstn, rewrite [firstn_all_of_ge (le_of_succ_le_succ h)] end
lemma firstn_firstn : ∀ (n m) (l : list A), firstn n (firstn m l) = firstn (min n m) l
| n 0 l := by rewrite [min_zero, firstn_zero, firstn_nil]
| 0 m l := by rewrite [zero_min]
| (succ n) (succ m) nil := by rewrite [*firstn_nil]
| (succ n) (succ m) (a::l) := by rewrite [*firstn_cons, firstn_firstn, min_succ_succ]
lemma length_firstn_le : ∀ (n) (l : list A), length (firstn n l) ≤ n
| 0 l := by rewrite [firstn_zero]
| (succ n) (a::l) := by rewrite [firstn_cons, length_cons, add_one]; apply succ_le_succ; apply length_firstn_le
| (succ n) [] := by rewrite [firstn_nil, length_nil]; apply zero_le
lemma length_firstn_eq : ∀ (n) (l : list A), length (firstn n l) = min n (length l)
| 0 l := by rewrite [firstn_zero, zero_min]
| (succ n) (a::l) := by rewrite [firstn_cons, *length_cons, *add_one, min_succ_succ, length_firstn_eq]
| (succ n) [] := by rewrite [firstn_nil]
end firstn
section dropn
variables {A : Type}
-- 'dropn n l' drops the first 'n' elements of 'l'
definition dropn : → list A → list A
| 0 a := a
| (succ n) [] := []
| (succ n) (x::r) := dropn n r
theorem length_dropn
: ∀ (i : ) (l : list A), length (dropn i l) = length l - i
| 0 l := rfl
| (succ i) [] := calc
length (dropn (succ i) []) = 0 - succ i : nat.zero_sub (succ i)
| (succ i) (x::l) := calc
length (dropn (succ i) (x::l))
= length (dropn i l) : rfl
... = length l - i : length_dropn i l
... = succ (length l) - succ i : succ_sub_succ (length l) i
end dropn
section count
variable {A : Type}
variable [decA : decidable_eq A]
include decA
definition count (a : A) : list A → nat
| [] := 0
| (x::xs) := if a = x then succ (count xs) else count xs
lemma count_nil (a : A) : count a [] = 0 :=
rfl
lemma count_cons (a b : A) (l : list A) : count a (b::l) = if a = b then succ (count a l) else count a l :=
rfl
lemma count_cons_eq (a : A) (l : list A) : count a (a::l) = succ (count a l) :=
if_pos rfl
lemma count_cons_of_ne {a b : A} (h : a ≠ b) (l : list A) : count a (b::l) = count a l :=
if_neg h
lemma count_cons_ge_count (a b : A) (l : list A) : count a (b::l) ≥ count a l :=
by_cases
(suppose a = b, begin subst b, rewrite count_cons_eq, apply le_succ end)
(suppose a ≠ b, begin rewrite (count_cons_of_ne this), apply le.refl end)
lemma count_singleton (a : A) : count a [a] = 1 :=
by rewrite count_cons_eq
lemma count_append (a : A) : ∀ l₁ l₂, count a (l₁++l₂) = count a l₁ + count a l₂
| [] l₂ := by rewrite [append_nil_left, count_nil, zero_add]
| (b::l₁) l₂ := by_cases
(suppose a = b, by rewrite [-this, append_cons, *count_cons_eq, succ_add, count_append])
(suppose a ≠ b, by rewrite [append_cons, *count_cons_of_ne this, count_append])
lemma count_concat (a : A) (l : list A) : count a (concat a l) = succ (count a l) :=
by rewrite [concat_eq_append, count_append, count_singleton]
lemma mem_of_count_gt_zero : ∀ {a : A} {l : list A}, count a l > 0 → a ∈ l
| a [] h := absurd h !lt.irrefl
| a (b::l) h := by_cases
(suppose a = b, begin subst b, apply mem_cons end)
(suppose a ≠ b,
have count a l > 0, by rewrite [count_cons_of_ne this at h]; exact h,
have a ∈ l, from mem_of_count_gt_zero this,
show a ∈ b::l, from mem_cons_of_mem _ this)
lemma count_gt_zero_of_mem : ∀ {a : A} {l : list A}, a ∈ l → count a l > 0
| a [] h := absurd h !not_mem_nil
| a (b::l) h := or.elim h
(suppose a = b, begin subst b, rewrite count_cons_eq, apply zero_lt_succ end)
(suppose a ∈ l, calc
count a (b::l) ≥ count a l : count_cons_ge_count
... > 0 : count_gt_zero_of_mem this)
lemma count_eq_zero_of_not_mem {a : A} {l : list A} (h : a ∉ l) : count a l = 0 :=
match count a l with
| zero := suppose count a l = zero, this
| (succ n) := suppose count a l = succ n, absurd (mem_of_count_gt_zero (begin rewrite this, exact dec_trivial end)) h
end rfl
end count
end list
attribute list.has_decidable_eq [instance]
attribute list.decidable_mem [instance]