b35abcc6a8
"inst_simp" means "instantiate simplification lemmas" The idea is to make it clear that this strategy is *not* a simplifier.
255 lines
7.6 KiB
Text
255 lines
7.6 KiB
Text
/-
|
||
Copyright (c) 2014 Floris van Doorn. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Floris van Doorn, Leonardo de Moura, Jeremy Avigad
|
||
|
||
Basic operations on the natural numbers.
|
||
-/
|
||
import ..num algebra.ring
|
||
open binary eq.ops
|
||
|
||
namespace nat
|
||
|
||
/- a variant of add, defined by recursion on the first argument -/
|
||
|
||
definition addl (x y : ℕ) : ℕ :=
|
||
nat.rec y (λ n r, succ r) x
|
||
infix ` ⊕ `:65 := addl
|
||
|
||
theorem addl_succ_right (n m : ℕ) : n ⊕ succ m = succ (n ⊕ m) :=
|
||
nat.induction_on n
|
||
rfl
|
||
(λ n₁ ih, calc
|
||
succ n₁ ⊕ succ m = succ (n₁ ⊕ succ m) : rfl
|
||
... = succ (succ (n₁ ⊕ m)) : ih
|
||
... = succ (succ n₁ ⊕ m) : rfl)
|
||
|
||
theorem add_eq_addl (x : ℕ) : ∀y, x + y = x ⊕ y :=
|
||
nat.induction_on x
|
||
(λ y, nat.induction_on y
|
||
rfl
|
||
(λ y₁ ih, calc
|
||
0 + succ y₁ = succ (0 + y₁) : rfl
|
||
... = succ (0 ⊕ y₁) : {ih}
|
||
... = 0 ⊕ (succ y₁) : rfl))
|
||
(λ x₁ ih₁ y, nat.induction_on y
|
||
(calc
|
||
succ x₁ + 0 = succ (x₁ + 0) : rfl
|
||
... = succ (x₁ ⊕ 0) : {ih₁ 0}
|
||
... = succ x₁ ⊕ 0 : rfl)
|
||
(λ y₁ ih₂, calc
|
||
succ x₁ + succ y₁ = succ (succ x₁ + y₁) : rfl
|
||
... = succ (succ x₁ ⊕ y₁) : {ih₂}
|
||
... = succ x₁ ⊕ succ y₁ : addl_succ_right))
|
||
|
||
/- successor and predecessor -/
|
||
|
||
theorem succ_ne_zero (n : ℕ) : succ n ≠ 0 :=
|
||
by contradiction
|
||
|
||
-- add_rewrite succ_ne_zero
|
||
|
||
theorem pred_zero [simp] : pred 0 = 0 :=
|
||
rfl
|
||
|
||
theorem pred_succ [simp] (n : ℕ) : pred (succ n) = n :=
|
||
rfl
|
||
|
||
theorem eq_zero_or_eq_succ_pred (n : ℕ) : n = 0 ∨ n = succ (pred n) :=
|
||
nat.induction_on n
|
||
(or.inl rfl)
|
||
(take m IH, or.inr
|
||
(show succ m = succ (pred (succ m)), from congr_arg succ !pred_succ⁻¹))
|
||
|
||
theorem exists_eq_succ_of_ne_zero {n : ℕ} (H : n ≠ 0) : ∃k : ℕ, n = succ k :=
|
||
exists.intro _ (or_resolve_right !eq_zero_or_eq_succ_pred H)
|
||
|
||
theorem succ.inj {n m : ℕ} (H : succ n = succ m) : n = m :=
|
||
nat.no_confusion H imp.id
|
||
|
||
abbreviation eq_of_succ_eq_succ := @succ.inj
|
||
|
||
theorem succ_ne_self {n : ℕ} : succ n ≠ n :=
|
||
nat.induction_on n
|
||
(take H : 1 = 0,
|
||
have ne : 1 ≠ 0, from !succ_ne_zero,
|
||
absurd H ne)
|
||
(take k IH H, IH (succ.inj H))
|
||
|
||
theorem discriminate {B : Prop} {n : ℕ} (H1: n = 0 → B) (H2 : ∀m, n = succ m → B) : B :=
|
||
have H : n = n → B, from nat.cases_on n H1 H2,
|
||
H rfl
|
||
|
||
theorem two_step_induction_on {P : ℕ → Prop} (a : ℕ) (H1 : P 0) (H2 : P 1)
|
||
(H3 : ∀ (n : ℕ) (IH1 : P n) (IH2 : P (succ n)), P (succ (succ n))) : P a :=
|
||
have stronger : P a ∧ P (succ a), from
|
||
nat.induction_on a
|
||
(and.intro H1 H2)
|
||
(take k IH,
|
||
have IH1 : P k, from and.elim_left IH,
|
||
have IH2 : P (succ k), from and.elim_right IH,
|
||
and.intro IH2 (H3 k IH1 IH2)),
|
||
and.elim_left stronger
|
||
|
||
theorem sub_induction {P : ℕ → ℕ → Prop} (n m : ℕ) (H1 : ∀m, P 0 m)
|
||
(H2 : ∀n, P (succ n) 0) (H3 : ∀n m, P n m → P (succ n) (succ m)) : P n m :=
|
||
have general : ∀m, P n m, from nat.induction_on n H1
|
||
(take k : ℕ,
|
||
assume IH : ∀m, P k m,
|
||
take m : ℕ,
|
||
nat.cases_on m (H2 k) (take l, (H3 k l (IH l)))),
|
||
general m
|
||
|
||
/- addition -/
|
||
|
||
protected theorem add_zero (n : ℕ) : n + 0 = n :=
|
||
rfl
|
||
|
||
theorem add_succ (n m : ℕ) : n + succ m = succ (n + m) :=
|
||
rfl
|
||
|
||
/-
|
||
Remark: we use 'local attributes' because in the end of the file
|
||
we show not is a comm_semiring, and we will automatically inherit
|
||
the associated [simp] lemmas from algebra
|
||
-/
|
||
local attribute nat.add_zero nat.add_succ [simp]
|
||
|
||
protected theorem zero_add (n : ℕ) : 0 + n = n :=
|
||
nat.induction_on n (by simp) (by simp)
|
||
|
||
theorem succ_add (n m : ℕ) : (succ n) + m = succ (n + m) :=
|
||
nat.induction_on m (by simp) (by simp)
|
||
|
||
local attribute nat.zero_add nat.succ_add [simp]
|
||
|
||
protected theorem add_comm (n m : ℕ) : n + m = m + n :=
|
||
nat.induction_on m (by simp) (by simp)
|
||
|
||
theorem succ_add_eq_succ_add (n m : ℕ) : succ n + m = n + succ m :=
|
||
by simp
|
||
|
||
protected theorem add_assoc (n m k : ℕ) : (n + m) + k = n + (m + k) :=
|
||
nat.induction_on k (by simp) (by simp)
|
||
|
||
protected theorem add_left_comm : Π (n m k : ℕ), n + (m + k) = m + (n + k) :=
|
||
left_comm nat.add_comm nat.add_assoc
|
||
|
||
local attribute nat.add_comm nat.add_assoc nat.add_left_comm [simp]
|
||
|
||
protected theorem add_right_comm : Π (n m k : ℕ), n + m + k = n + k + m :=
|
||
right_comm nat.add_comm nat.add_assoc
|
||
|
||
protected theorem add_left_cancel {n m k : ℕ} : n + m = n + k → m = k :=
|
||
nat.induction_on n (by simp) (by inst_simp)
|
||
|
||
protected theorem add_right_cancel {n m k : ℕ} (H : n + m = k + m) : n = k :=
|
||
have H2 : m + n = m + k, by simp,
|
||
nat.add_left_cancel H2
|
||
|
||
theorem eq_zero_of_add_eq_zero_right {n m : ℕ} : n + m = 0 → n = 0 :=
|
||
nat.induction_on n (by simp) (by inst_simp)
|
||
|
||
theorem eq_zero_of_add_eq_zero_left {n m : ℕ} (H : n + m = 0) : m = 0 :=
|
||
eq_zero_of_add_eq_zero_right (!nat.add_comm ⬝ H)
|
||
|
||
theorem eq_zero_and_eq_zero_of_add_eq_zero {n m : ℕ} (H : n + m = 0) : n = 0 ∧ m = 0 :=
|
||
and.intro (eq_zero_of_add_eq_zero_right H) (eq_zero_of_add_eq_zero_left H)
|
||
|
||
theorem add_one (n : ℕ) : n + 1 = succ n := rfl
|
||
|
||
local attribute add_one [simp]
|
||
|
||
theorem one_add (n : ℕ) : 1 + n = succ n :=
|
||
by simp
|
||
|
||
theorem succ_eq_add_one (n : ℕ) : succ n = n + 1 :=
|
||
rfl
|
||
|
||
/- multiplication -/
|
||
|
||
protected theorem mul_zero (n : ℕ) : n * 0 = 0 :=
|
||
rfl
|
||
|
||
theorem mul_succ (n m : ℕ) : n * succ m = n * m + n :=
|
||
rfl
|
||
|
||
local attribute nat.mul_zero nat.mul_succ [simp]
|
||
|
||
-- commutativity, distributivity, associativity, identity
|
||
|
||
protected theorem zero_mul (n : ℕ) : 0 * n = 0 :=
|
||
nat.induction_on n (by simp) (by simp)
|
||
|
||
theorem succ_mul (n m : ℕ) : (succ n) * m = (n * m) + m :=
|
||
nat.induction_on m (by simp) (by simp)
|
||
|
||
local attribute nat.zero_mul nat.succ_mul [simp]
|
||
|
||
protected theorem mul_comm (n m : ℕ) : n * m = m * n :=
|
||
nat.induction_on m (by simp) (by simp)
|
||
|
||
protected theorem right_distrib (n m k : ℕ) : (n + m) * k = n * k + m * k :=
|
||
nat.induction_on k (by simp) (by simp)
|
||
|
||
protected theorem left_distrib (n m k : ℕ) : n * (m + k) = n * m + n * k :=
|
||
nat.induction_on k (by simp) (by simp)
|
||
|
||
local attribute nat.mul_comm nat.right_distrib nat.left_distrib [simp]
|
||
|
||
protected theorem mul_assoc (n m k : ℕ) : (n * m) * k = n * (m * k) :=
|
||
nat.induction_on k (by simp) (by simp)
|
||
|
||
local attribute nat.mul_assoc [simp]
|
||
|
||
protected theorem mul_one (n : ℕ) : n * 1 = n :=
|
||
calc
|
||
n * 1 = n * 0 + n : mul_succ
|
||
... = n : by simp
|
||
|
||
local attribute nat.mul_one [simp]
|
||
|
||
protected theorem one_mul (n : ℕ) : 1 * n = n :=
|
||
by simp
|
||
|
||
local attribute nat.one_mul [simp]
|
||
|
||
theorem eq_zero_or_eq_zero_of_mul_eq_zero {n m : ℕ} : n * m = 0 → n = 0 ∨ m = 0 :=
|
||
nat.cases_on n (by simp)
|
||
(take n',
|
||
nat.cases_on m
|
||
(by simp)
|
||
(take m', assume H,
|
||
absurd
|
||
(show succ (succ n' * m' + n') = 0, by simp)
|
||
!succ_ne_zero))
|
||
|
||
protected definition comm_semiring [reducible] [trans_instance] : comm_semiring nat :=
|
||
⦃comm_semiring,
|
||
add := nat.add,
|
||
add_assoc := nat.add_assoc,
|
||
zero := nat.zero,
|
||
zero_add := nat.zero_add,
|
||
add_zero := nat.add_zero,
|
||
add_comm := nat.add_comm,
|
||
mul := nat.mul,
|
||
mul_assoc := nat.mul_assoc,
|
||
one := nat.succ nat.zero,
|
||
one_mul := nat.one_mul,
|
||
mul_one := nat.mul_one,
|
||
left_distrib := nat.left_distrib,
|
||
right_distrib := nat.right_distrib,
|
||
zero_mul := nat.zero_mul,
|
||
mul_zero := nat.mul_zero,
|
||
mul_comm := nat.mul_comm⦄
|
||
|
||
end nat
|
||
|
||
section
|
||
open nat
|
||
definition iterate {A : Type} (op : A → A) : ℕ → A → A
|
||
| 0 := λ a, a
|
||
| (succ k) := λ a, op (iterate k a)
|
||
|
||
notation f`^[`n`]` := iterate f n
|
||
end
|