lean2/library/data/finset/comb.lean

103 lines
4 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: data.finset
Author: Leonardo de Moura
Combinators for finite sets
-/
import data.finset.basic logic.identities
open list quot subtype decidable perm function
namespace finset
section map
variables {A B : Type}
variable [h : decidable_eq B]
include h
definition map (f : A → B) (s : finset A) : finset B :=
quot.lift_on s
(λ l, to_finset (list.map f (elt_of l)))
(λ l₁ l₂ p, quot.sound (perm_erase_dup_of_perm (perm_map _ p)))
theorem map_empty (f : A → B) : map f ∅ = ∅ :=
rfl
end map
section all
variables {A : Type}
definition all (s : finset A) (p : A → Prop) : Prop :=
quot.lift_on s
(λ l, all (elt_of l) p)
(λ l₁ l₂ p, foldr_eq_of_perm (λ a₁ a₂ q, propext !and.left_comm) p true)
theorem all_empty (p : A → Prop) : all ∅ p = true :=
rfl
theorem of_mem_of_all {p : A → Prop} {a : A} {s : finset A} : a ∈ s → all s p → p a :=
quot.induction_on s (λ l i h, list.of_mem_of_all i h)
theorem all_implies {p q : A → Prop} {s : finset A} : all s p → (∀ x, p x → q x) → all s q :=
quot.induction_on s (λ l h₁ h₂, list.all_implies h₁ h₂)
variable [h : decidable_eq A]
include h
theorem all_union {p : A → Prop} {s₁ s₂ : finset A} : all s₁ p → all s₂ p → all (s₁ s₂) p :=
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ a₁ a₂, all_union a₁ a₂)
theorem all_of_all_union_left {p : A → Prop} {s₁ s₂ : finset A} : all (s₁ s₂) p → all s₁ p :=
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ a, list.all_of_all_union_left a)
theorem all_of_all_union_right {p : A → Prop} {s₁ s₂ : finset A} : all (s₁ s₂) p → all s₂ p :=
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ a, list.all_of_all_union_right a)
theorem all_insert_of_all {p : A → Prop} {a : A} {s : finset A} : p a → all s p → all (insert a s) p :=
quot.induction_on s (λ l h₁ h₂, list.all_insert_of_all h₁ h₂)
theorem all_erase_of_all {p : A → Prop} (a : A) {s : finset A}: all s p → all (erase a s) p :=
quot.induction_on s (λ l h, list.all_erase_of_all a h)
theorem all_intersection_of_all_left {p : A → Prop} {s₁ : finset A} (s₂ : finset A) : all s₁ p → all (s₁ ∩ s₂) p :=
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ h, list.all_intersection_of_all_left _ h)
theorem all_intersection_of_all_right {p : A → Prop} {s₁ : finset A} (s₂ : finset A) : all s₂ p → all (s₁ ∩ s₂) p :=
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ h, list.all_intersection_of_all_right _ h)
end all
section cross_product
variables {A B : Type}
definition cross_product (s₁ : finset A) (s₂ : finset B) : finset (A × B) :=
quot.lift_on₂ s₁ s₂
(λ l₁ l₂,
to_finset_of_nodup (list.cross_product (elt_of l₁) (elt_of l₂))
(nodup_cross_product (has_property l₁) (has_property l₂)))
(λ v₁ v₂ w₁ w₂ p₁ p₂, quot.sound (perm_cross_product p₁ p₂))
infix * := cross_product
theorem empty_cross_product (s : finset B) : @empty A * s = ∅ :=
quot.induction_on s (λ l, rfl)
theorem mem_cross_product {a : A} {b : B} {s₁ : finset A} {s₂ : finset B}
: a ∈ s₁ → b ∈ s₂ → (a, b) ∈ s₁ * s₂ :=
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ i₁ i₂, list.mem_cross_product i₁ i₂)
theorem mem_of_mem_cross_product_left {a : A} {b : B} {s₁ : finset A} {s₂ : finset B}
: (a, b) ∈ s₁ * s₂ → a ∈ s₁ :=
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ i, list.mem_of_mem_cross_product_left i)
theorem mem_of_mem_cross_product_right {a : A} {b : B} {s₁ : finset A} {s₂ : finset B}
: (a, b) ∈ s₁ * s₂ → b ∈ s₂ :=
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ i, list.mem_of_mem_cross_product_right i)
theorem cross_product_empty (s : finset A) : s * @empty B = ∅ :=
ext (λ p,
match p with
| (a, b) := iff.intro
(λ i, absurd (mem_of_mem_cross_product_right i) !not_mem_empty)
(λ i, absurd i !not_mem_empty)
end)
end cross_product
end finset