lean2/hott/homotopy/circle.hlean
Floris van Doorn 087c44d614 style(hott): rename instances of pType using pfoo instead of Foo
For example, the pointed suspension operation was called Susp before this commit, but now is called psusp
2016-02-22 11:15:38 -08:00

315 lines
11 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
Declaration of the circle
-/
import .sphere
import types.bool types.int.hott types.equiv
import algebra.homotopy_group algebra.hott .connectedness
open eq susp bool sphere_index is_equiv equiv equiv.ops is_trunc pi algebra homotopy
definition circle : Type₀ := sphere 1
namespace circle
notation `S¹` := circle
definition base1 : circle := !north
definition base2 : circle := !south
definition seg1 : base1 = base2 := merid !north
definition seg2 : base1 = base2 := merid !south
definition base : circle := base1
definition loop : base = base := seg2 ⬝ seg1⁻¹
definition rec2 {P : circle → Type} (Pb1 : P base1) (Pb2 : P base2)
(Ps1 : Pb1 =[seg1] Pb2) (Ps2 : Pb1 =[seg2] Pb2) (x : circle) : P x :=
begin
induction x with b,
{ exact Pb1},
{ exact Pb2},
{ esimp at *, induction b with y,
{ exact Ps1},
{ exact Ps2},
{ cases y}},
end
definition rec2_on [reducible] {P : circle → Type} (x : circle) (Pb1 : P base1) (Pb2 : P base2)
(Ps1 : Pb1 =[seg1] Pb2) (Ps2 : Pb1 =[seg2] Pb2) : P x :=
circle.rec2 Pb1 Pb2 Ps1 Ps2 x
theorem rec2_seg1 {P : circle → Type} (Pb1 : P base1) (Pb2 : P base2)
(Ps1 : Pb1 =[seg1] Pb2) (Ps2 : Pb1 =[seg2] Pb2)
: apdo (rec2 Pb1 Pb2 Ps1 Ps2) seg1 = Ps1 :=
!rec_merid
theorem rec2_seg2 {P : circle → Type} (Pb1 : P base1) (Pb2 : P base2)
(Ps1 : Pb1 =[seg1] Pb2) (Ps2 : Pb1 =[seg2] Pb2)
: apdo (rec2 Pb1 Pb2 Ps1 Ps2) seg2 = Ps2 :=
!rec_merid
definition elim2 {P : Type} (Pb1 Pb2 : P) (Ps1 Ps2 : Pb1 = Pb2) (x : circle) : P :=
rec2 Pb1 Pb2 (pathover_of_eq Ps1) (pathover_of_eq Ps2) x
definition elim2_on [reducible] {P : Type} (x : circle) (Pb1 Pb2 : P)
(Ps1 : Pb1 = Pb2) (Ps2 : Pb1 = Pb2) : P :=
elim2 Pb1 Pb2 Ps1 Ps2 x
theorem elim2_seg1 {P : Type} (Pb1 Pb2 : P) (Ps1 : Pb1 = Pb2) (Ps2 : Pb1 = Pb2)
: ap (elim2 Pb1 Pb2 Ps1 Ps2) seg1 = Ps1 :=
begin
apply eq_of_fn_eq_fn_inv !(pathover_constant seg1),
rewrite [▸*,-apdo_eq_pathover_of_eq_ap,↑elim2,rec2_seg1],
end
theorem elim2_seg2 {P : Type} (Pb1 Pb2 : P) (Ps1 : Pb1 = Pb2) (Ps2 : Pb1 = Pb2)
: ap (elim2 Pb1 Pb2 Ps1 Ps2) seg2 = Ps2 :=
begin
apply eq_of_fn_eq_fn_inv !(pathover_constant seg2),
rewrite [▸*,-apdo_eq_pathover_of_eq_ap,↑elim2,rec2_seg2],
end
definition elim2_type (Pb1 Pb2 : Type) (Ps1 Ps2 : Pb1 ≃ Pb2) (x : circle) : Type :=
elim2 Pb1 Pb2 (ua Ps1) (ua Ps2) x
definition elim2_type_on [reducible] (x : circle) (Pb1 Pb2 : Type) (Ps1 Ps2 : Pb1 ≃ Pb2)
: Type :=
elim2_type Pb1 Pb2 Ps1 Ps2 x
theorem elim2_type_seg1 (Pb1 Pb2 : Type) (Ps1 Ps2 : Pb1 ≃ Pb2)
: transport (elim2_type Pb1 Pb2 Ps1 Ps2) seg1 = Ps1 :=
by rewrite [tr_eq_cast_ap_fn,↑elim2_type,elim2_seg1];apply cast_ua_fn
theorem elim2_type_seg2 (Pb1 Pb2 : Type) (Ps1 Ps2 : Pb1 ≃ Pb2)
: transport (elim2_type Pb1 Pb2 Ps1 Ps2) seg2 = Ps2 :=
by rewrite [tr_eq_cast_ap_fn,↑elim2_type,elim2_seg2];apply cast_ua_fn
protected definition rec {P : circle → Type} (Pbase : P base) (Ploop : Pbase =[loop] Pbase)
(x : circle) : P x :=
begin
fapply (rec2_on x),
{ exact Pbase},
{ exact (transport P seg1 Pbase)},
{ apply pathover_tr},
{ apply pathover_tr_of_pathover, exact Ploop}
end
protected definition rec_on [reducible] {P : circle → Type} (x : circle) (Pbase : P base)
(Ploop : Pbase =[loop] Pbase) : P x :=
circle.rec Pbase Ploop x
theorem rec_loop_helper {A : Type} (P : A → Type)
{x y z : A} {p : x = y} {p' : z = y} {u : P x} {v : P z} (q : u =[p ⬝ p'⁻¹] v) :
pathover_tr_of_pathover q ⬝o !pathover_tr⁻¹ᵒ = q :=
by cases p'; cases q; exact idp
definition con_refl {A : Type} {x y : A} (p : x = y) : p ⬝ refl _ = p :=
eq.rec_on p idp
theorem rec_loop {P : circle → Type} (Pbase : P base) (Ploop : Pbase =[loop] Pbase) :
apdo (circle.rec Pbase Ploop) loop = Ploop :=
begin
rewrite [↑loop,apdo_con,↑circle.rec,↑circle.rec2_on,↑base,rec2_seg2,apdo_inv,rec2_seg1],
apply rec_loop_helper
end
protected definition elim {P : Type} (Pbase : P) (Ploop : Pbase = Pbase)
(x : circle) : P :=
circle.rec Pbase (pathover_of_eq Ploop) x
protected definition elim_on [reducible] {P : Type} (x : circle) (Pbase : P)
(Ploop : Pbase = Pbase) : P :=
circle.elim Pbase Ploop x
theorem elim_loop {P : Type} (Pbase : P) (Ploop : Pbase = Pbase) :
ap (circle.elim Pbase Ploop) loop = Ploop :=
begin
apply eq_of_fn_eq_fn_inv !(pathover_constant loop),
rewrite [▸*,-apdo_eq_pathover_of_eq_ap,↑circle.elim,rec_loop],
end
protected definition elim_type (Pbase : Type) (Ploop : Pbase ≃ Pbase)
(x : circle) : Type :=
circle.elim Pbase (ua Ploop) x
protected definition elim_type_on [reducible] (x : circle) (Pbase : Type)
(Ploop : Pbase ≃ Pbase) : Type :=
circle.elim_type Pbase Ploop x
theorem elim_type_loop (Pbase : Type) (Ploop : Pbase ≃ Pbase) :
transport (circle.elim_type Pbase Ploop) loop = Ploop :=
by rewrite [tr_eq_cast_ap_fn,↑circle.elim_type,circle.elim_loop];apply cast_ua_fn
theorem elim_type_loop_inv (Pbase : Type) (Ploop : Pbase ≃ Pbase) :
transport (circle.elim_type Pbase Ploop) loop⁻¹ = to_inv Ploop :=
by rewrite [tr_inv_fn]; apply inv_eq_inv; apply elim_type_loop
end circle
attribute circle.base1 circle.base2 circle.base [constructor]
attribute circle.rec2 circle.elim2 [unfold 6] [recursor 6]
attribute circle.elim2_type [unfold 5]
attribute circle.rec2_on circle.elim2_on [unfold 2]
attribute circle.elim2_type [unfold 1]
attribute circle.rec circle.elim [unfold 4] [recursor 4]
attribute circle.elim_type [unfold 3]
attribute circle.rec_on circle.elim_on [unfold 2]
attribute circle.elim_type_on [unfold 1]
namespace circle
definition pointed_circle [instance] [constructor] : pointed S¹ :=
pointed.mk base
definition pcircle [constructor] : Type* := pointed.mk' S¹
notation `S¹.` := pcircle
definition loop_neq_idp : loop ≠ idp :=
assume H : loop = idp,
have H2 : Π{A : Type₁} {a : A} {p : a = a}, p = idp,
from λA a p, calc
p = ap (circle.elim a p) loop : elim_loop
... = ap (circle.elim a p) (refl base) : by rewrite H,
eq_bnot_ne_idp H2
definition nonidp (x : circle) : x = x :=
begin
induction x,
{ exact loop},
{ apply concato_eq, apply pathover_eq_lr, rewrite [con.left_inv,idp_con]}
end
definition nonidp_neq_idp : nonidp ≠ (λx, idp) :=
assume H : nonidp = λx, idp,
have H2 : loop = idp, from apd10 H base,
absurd H2 loop_neq_idp
open int
protected definition code [unfold 1] (x : circle) : Type₀ :=
circle.elim_type_on x equiv_succ
definition transport_code_loop (a : ) : transport circle.code loop a = succ a :=
ap10 !elim_type_loop a
definition transport_code_loop_inv (a : ) : transport circle.code loop⁻¹ a = pred a :=
ap10 !elim_type_loop_inv a
protected definition encode [unfold 2] {x : circle} (p : base = x) : circle.code x :=
transport circle.code p (of_num 0)
protected definition decode [unfold 1] {x : circle} : circle.code x → base = x :=
begin
induction x,
{ exact power loop},
{ apply arrow_pathover_left, intro b, apply concato_eq, apply pathover_eq_r,
rewrite [power_con,transport_code_loop]}
end
definition circle_eq_equiv [constructor] (x : circle) : (base = x) ≃ circle.code x :=
begin
fapply equiv.MK,
{ exact circle.encode},
{ exact circle.decode},
{ exact abstract [irreducible] begin
induction x,
{ intro a, esimp, apply rec_nat_on a,
{ exact idp},
{ intros n p, rewrite [↑circle.encode, -power_con, con_tr, transport_code_loop],
exact ap succ p},
{ intros n p, rewrite [↑circle.encode, nat_succ_eq_int_succ, neg_succ, -power_con_inv,
@con_tr _ circle.code, transport_code_loop_inv, ↑[circle.encode] at p, p, -neg_succ] }},
{ apply pathover_of_tr_eq, apply eq_of_homotopy, intro a, apply @is_set.elim,
esimp, exact _} end end},
{ intro p, cases p, exact idp},
end
definition base_eq_base_equiv [constructor] : base = base ≃ :=
circle_eq_equiv base
definition decode_add (a b : ) : circle.decode a ⬝ circle.decode b = circle.decode (a +[] b) :=
!power_con_power
definition encode_con (p q : base = base)
: circle.encode (p ⬝ q) = circle.encode p +[] circle.encode q :=
preserve_binary_of_inv_preserve base_eq_base_equiv concat (@add _) decode_add p q
--the carrier of π₁(S¹) is the set-truncation of base = base.
open algebra trunc equiv.ops
definition fg_carrier_equiv_int : π[1](S¹.) ≃ :=
trunc_equiv_trunc 0 base_eq_base_equiv ⬝e @(trunc_equiv _) proof _ qed
definition con_comm_base (p q : base = base) : p ⬝ q = q ⬝ p :=
eq_of_fn_eq_fn base_eq_base_equiv (by esimp;rewrite [+encode_con,add.comm])
definition fundamental_group_of_circle : π₁(S¹.) = group_integers :=
begin
apply (Group_eq fg_carrier_equiv_int),
intros g h,
induction g with g', induction h with h',
apply encode_con,
end
open nat
definition homotopy_group_of_circle (n : ) : πG[n+1 +1] S¹. = G0 :=
begin
refine @trivial_homotopy_of_is_set_loop_space S¹. 1 n _,
apply is_trunc_equiv_closed_rev, apply base_eq_base_equiv
end
definition eq_equiv_Z (x : S¹) : x = x ≃ :=
begin
induction x,
{ apply base_eq_base_equiv},
{ apply equiv_pathover, intro p p' q, apply pathover_of_eq,
note H := eq_of_square (square_of_pathover q),
rewrite con_comm_base at H,
note H' := cancel_left _ H,
induction H', reflexivity}
end
definition is_trunc_circle [instance] : is_trunc 1 S¹ :=
begin
apply is_trunc_succ_of_is_trunc_loop,
{ exact unit.star},
{ intro x, apply is_trunc_equiv_closed_rev, apply eq_equiv_Z}
end
definition is_conn_circle [instance] : is_conn 0 S¹ :=
begin
fapply is_contr.mk,
{ exact tr base},
{ intro x, induction x with x,
induction x,
{ reflexivity},
{ apply is_prop.elimo}}
end
definition circle_mul [reducible] (x y : S¹) : S¹ :=
begin
induction x,
{ induction y,
{ exact base },
{ exact loop } },
{ induction y,
{ exact loop },
{ apply eq_pathover, rewrite elim_loop,
apply square_of_eq, reflexivity } }
end
definition circle_mul_base (x : S¹) : circle_mul x base = x :=
begin
induction x,
{ reflexivity },
{ apply eq_pathover, krewrite [elim_loop,ap_id], apply hrefl }
end
definition circle_base_mul (x : S¹) : circle_mul base x = x :=
begin
induction x,
{ reflexivity },
{ apply eq_pathover, krewrite [elim_loop,ap_id], apply hrefl }
end
end circle