91 lines
4.1 KiB
Text
91 lines
4.1 KiB
Text
/-
|
||
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Author: Jeremy Avigad
|
||
|
||
Cardinality calculations for finite sets.
|
||
-/
|
||
import data.finset.to_set data.set.function
|
||
open nat eq.ops
|
||
|
||
namespace finset
|
||
|
||
variables {A B : Type}
|
||
variables [deceqA : decidable_eq A] [deceqB : decidable_eq B]
|
||
include deceqA
|
||
|
||
theorem card_add_card (s₁ s₂ : finset A) : card s₁ + card s₂ = card (s₁ ∪ s₂) + card (s₁ ∩ s₂) :=
|
||
finset.induction_on s₂
|
||
(show card s₁ + card ∅ = card (s₁ ∪ ∅) + card (s₁ ∩ ∅),
|
||
by rewrite [union_empty, card_empty, inter_empty])
|
||
(take s₂ a,
|
||
assume ans2: a ∉ s₂,
|
||
assume IH : card s₁ + card s₂ = card (s₁ ∪ s₂) + card (s₁ ∩ s₂),
|
||
show card s₁ + card (insert a s₂) = card (s₁ ∪ (insert a s₂)) + card (s₁ ∩ (insert a s₂)),
|
||
from decidable.by_cases
|
||
(assume as1 : a ∈ s₁,
|
||
assert H : a ∉ s₁ ∩ s₂, from assume H', ans2 (mem_of_mem_inter_right H'),
|
||
begin
|
||
rewrite [card_insert_of_not_mem ans2, union.comm, -insert_union, union.comm],
|
||
rewrite [insert_union, insert_eq_of_mem as1, insert_eq, inter.distrib_left, inter.comm],
|
||
rewrite [singleton_inter_of_mem as1, -insert_eq, card_insert_of_not_mem H, -*add.assoc],
|
||
rewrite IH
|
||
end)
|
||
(assume ans1 : a ∉ s₁,
|
||
assert H : a ∉ s₁ ∪ s₂, from assume H',
|
||
or.elim (mem_or_mem_of_mem_union H') (assume as1, ans1 as1) (assume as2, ans2 as2),
|
||
begin
|
||
rewrite [card_insert_of_not_mem ans2, union.comm, -insert_union, union.comm],
|
||
rewrite [card_insert_of_not_mem H, insert_eq, inter.distrib_left, inter.comm],
|
||
rewrite [singleton_inter_of_not_mem ans1, empty_union, add.right_comm],
|
||
rewrite [-add.assoc, IH]
|
||
end))
|
||
|
||
theorem card_union (s₁ s₂ : finset A) : card (s₁ ∪ s₂) = card s₁ + card s₂ - card (s₁ ∩ s₂) :=
|
||
calc
|
||
card (s₁ ∪ s₂) = card (s₁ ∪ s₂) + card (s₁ ∩ s₂) - card (s₁ ∩ s₂) : add_sub_cancel
|
||
... = card s₁ + card s₂ - card (s₁ ∩ s₂) : card_add_card
|
||
|
||
theorem card_union_of_disjoint {s₁ s₂ : finset A} (H : disjoint s₁ s₂) :
|
||
card (s₁ ∪ s₂) = card s₁ + card s₂ :=
|
||
by rewrite [card_union, ↑disjoint at H, inter_empty_of_disjoint H]
|
||
|
||
theorem card_le_card_of_subset {s₁ s₂ : finset A} (H : s₁ ⊆ s₂) : card s₁ ≤ card s₂ :=
|
||
have H1 : disjoint s₁ (s₂ \ s₁),
|
||
from disjoint.intro (take x, assume H1 H2, not_mem_of_mem_diff H2 H1),
|
||
calc
|
||
card s₂ = card (s₁ ∪ (s₂ \ s₁)) : union_diff_cancel H
|
||
... = card s₁ + card (s₂ \ s₁) : card_union_of_disjoint H1
|
||
... ≥ card s₁ : le_add_right
|
||
|
||
section card_image
|
||
open set
|
||
include deceqB
|
||
|
||
theorem card_image_eq_of_inj_on {f : A → B} {s : finset A} :
|
||
inj_on f (ts s) → card (image f s) = card s :=
|
||
finset.induction_on s
|
||
(assume H : inj_on f (ts empty), calc
|
||
card (image f empty) = 0 : card_empty
|
||
... = card empty : card_empty)
|
||
(take t a,
|
||
assume H : a ∉ t,
|
||
assume IH : inj_on f (ts t) → card (image f t) = card t,
|
||
assume H1 : inj_on f (ts (insert a t)),
|
||
have H2 : ts t ⊆ ts (insert a t), by rewrite [-subset_eq_to_set_subset]; apply subset_insert,
|
||
have H3 : card (image f t) = card t, from IH (inj_on_of_inj_on_of_subset H1 H2),
|
||
have H4 : f a ∉ image f t,
|
||
proof
|
||
assume H5 : f a ∈ image f t,
|
||
obtain x (H6l : x ∈ t) (H6r : f x = f a), from exists_of_mem_image H5,
|
||
have H7 : x = a, from H1 (mem_insert_of_mem _ H6l) !mem_insert H6r,
|
||
show false, from H (H7 ▸ H6l)
|
||
qed,
|
||
calc
|
||
card (image f (insert a t)) = card (insert (f a) (image f t)) : image_insert
|
||
... = card (image f t) + 1 : card_insert_of_not_mem H4
|
||
... = card t + 1 : H3
|
||
... = card (insert a t) : card_insert_of_not_mem H)
|
||
end card_image
|
||
|
||
end finset
|