185 lines
6.7 KiB
Text
185 lines
6.7 KiB
Text
/-
|
||
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Author: Leonardo de Moura, Jeremy Avigad
|
||
|
||
Combinators for finite sets.
|
||
-/
|
||
import data.finset.basic logic.identities
|
||
open list quot subtype decidable perm function
|
||
|
||
namespace finset
|
||
|
||
/- map -/
|
||
section map
|
||
variables {A B : Type}
|
||
variable [h : decidable_eq B]
|
||
include h
|
||
|
||
definition map (f : A → B) (s : finset A) : finset B :=
|
||
quot.lift_on s
|
||
(λ l, to_finset (list.map f (elt_of l)))
|
||
(λ l₁ l₂ p, quot.sound (perm_erase_dup_of_perm (perm_map _ p)))
|
||
|
||
theorem map_empty (f : A → B) : map f ∅ = ∅ :=
|
||
rfl
|
||
end map
|
||
|
||
/- filter and set-builder notation -/
|
||
section filter
|
||
variables {A : Type} [deceq : decidable_eq A]
|
||
include deceq
|
||
variables (p : A → Prop) [decp : decidable_pred p] (s : finset A) {x : A}
|
||
include decp
|
||
|
||
definition filter : finset A :=
|
||
quot.lift_on s
|
||
(λl, to_finset_of_nodup
|
||
(list.filter p (subtype.elt_of l))
|
||
(list.nodup_filter p (subtype.has_property l)))
|
||
(λ l₁ l₂ u, quot.sound (perm.perm_filter u))
|
||
|
||
notation `{` binders ∈ s `|` r:(scoped:1 p, filter p s) `}` := r
|
||
|
||
theorem filter_empty : filter p ∅ = ∅ := rfl
|
||
|
||
variables {p s}
|
||
|
||
theorem of_mem_filter : x ∈ filter p s → p x :=
|
||
quot.induction_on s (take l, list.of_mem_filter)
|
||
|
||
theorem mem_of_mem_filter : x ∈ filter p s → x ∈ s :=
|
||
quot.induction_on s (take l, list.mem_of_mem_filter)
|
||
|
||
theorem mem_filter_of_mem {x : A} : x ∈ s → p x → x ∈ filter p s :=
|
||
quot.induction_on s (take l, list.mem_filter_of_mem)
|
||
|
||
variables (p s)
|
||
|
||
theorem mem_filter_eq : x ∈ filter p s = (x ∈ s ∧ p x) :=
|
||
propext (iff.intro
|
||
(assume H, and.intro (mem_of_mem_filter H) (of_mem_filter H))
|
||
(assume H, mem_filter_of_mem (and.left H) (and.right H)))
|
||
end filter
|
||
|
||
/- set difference -/
|
||
section diff
|
||
variables {A : Type} [deceq : decidable_eq A]
|
||
include deceq
|
||
|
||
definition diff (s t : finset A) : finset A := {x ∈ s | x ∉ t}
|
||
infix `\`:70 := diff
|
||
|
||
theorem mem_of_mem_diff {s t : finset A} {x : A} (H : x ∈ s \ t) : x ∈ s :=
|
||
mem_of_mem_filter H
|
||
|
||
theorem not_mem_of_mem_diff {s t : finset A} {x : A} (H : x ∈ s \ t) : x ∉ t :=
|
||
of_mem_filter H
|
||
|
||
theorem mem_diff {s t : finset A} {x : A} (H1 : x ∈ s) (H2 : x ∉ t) : x ∈ s \ t :=
|
||
mem_filter_of_mem H1 H2
|
||
|
||
theorem mem_diff_iff (s t : finset A) (x : A) : x ∈ s \ t ↔ x ∈ s ∧ x ∉ t :=
|
||
iff.intro
|
||
(assume H, and.intro (mem_of_mem_diff H) (not_mem_of_mem_diff H))
|
||
(assume H, mem_diff (and.left H) (and.right H))
|
||
|
||
theorem mem_diff_eq (s t : finset A) (x : A) : x ∈ s \ t = (x ∈ s ∧ x ∉ t) :=
|
||
propext !mem_diff_iff
|
||
|
||
theorem union_diff_cancel {s t : finset A} (H : s ⊆ t) : s ∪ (t \ s) = t :=
|
||
ext (take x, iff.intro
|
||
(assume H1 : x ∈ s ∪ (t \ s),
|
||
or.elim (mem_or_mem_of_mem_union H1)
|
||
(assume H2 : x ∈ s, mem_of_subset_of_mem H H2)
|
||
(assume H2 : x ∈ t \ s, mem_of_mem_diff H2))
|
||
(assume H1 : x ∈ t,
|
||
decidable.by_cases
|
||
(assume H2 : x ∈ s, mem_union_left _ H2)
|
||
(assume H2 : x ∉ s, mem_union_right _ (mem_diff H1 H2))))
|
||
|
||
theorem diff_union_cancel {s t : finset A} (H : s ⊆ t) : (t \ s) ∪ s = t :=
|
||
eq.subst !union.comm (!union_diff_cancel H)
|
||
end diff
|
||
|
||
/- all -/
|
||
section all
|
||
variables {A : Type}
|
||
definition all (s : finset A) (p : A → Prop) : Prop :=
|
||
quot.lift_on s
|
||
(λ l, all (elt_of l) p)
|
||
(λ l₁ l₂ p, foldr_eq_of_perm (λ a₁ a₂ q, propext !and.left_comm) p true)
|
||
|
||
-- notation for bounded quantifiers
|
||
notation `forallb` binders `∈` a `,` r:(scoped:1 P, P) := all a r
|
||
notation `∀₀` binders `∈` a `,` r:(scoped:1 P, P) := all a r
|
||
|
||
theorem all_empty (p : A → Prop) : all ∅ p = true :=
|
||
rfl
|
||
|
||
theorem of_mem_of_all {p : A → Prop} {a : A} {s : finset A} : a ∈ s → all s p → p a :=
|
||
quot.induction_on s (λ l i h, list.of_mem_of_all i h)
|
||
|
||
theorem all_implies {p q : A → Prop} {s : finset A} : all s p → (∀ x, p x → q x) → all s q :=
|
||
quot.induction_on s (λ l h₁ h₂, list.all_implies h₁ h₂)
|
||
|
||
variable [h : decidable_eq A]
|
||
include h
|
||
|
||
theorem all_union {p : A → Prop} {s₁ s₂ : finset A} : all s₁ p → all s₂ p → all (s₁ ∪ s₂) p :=
|
||
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ a₁ a₂, all_union a₁ a₂)
|
||
|
||
theorem all_of_all_union_left {p : A → Prop} {s₁ s₂ : finset A} : all (s₁ ∪ s₂) p → all s₁ p :=
|
||
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ a, list.all_of_all_union_left a)
|
||
|
||
theorem all_of_all_union_right {p : A → Prop} {s₁ s₂ : finset A} : all (s₁ ∪ s₂) p → all s₂ p :=
|
||
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ a, list.all_of_all_union_right a)
|
||
|
||
theorem all_insert_of_all {p : A → Prop} {a : A} {s : finset A} : p a → all s p → all (insert a s) p :=
|
||
quot.induction_on s (λ l h₁ h₂, list.all_insert_of_all h₁ h₂)
|
||
|
||
theorem all_erase_of_all {p : A → Prop} (a : A) {s : finset A}: all s p → all (erase a s) p :=
|
||
quot.induction_on s (λ l h, list.all_erase_of_all a h)
|
||
|
||
theorem all_inter_of_all_left {p : A → Prop} {s₁ : finset A} (s₂ : finset A) : all s₁ p → all (s₁ ∩ s₂) p :=
|
||
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ h, list.all_inter_of_all_left _ h)
|
||
|
||
theorem all_inter_of_all_right {p : A → Prop} {s₁ : finset A} (s₂ : finset A) : all s₂ p → all (s₁ ∩ s₂) p :=
|
||
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ h, list.all_inter_of_all_right _ h)
|
||
end all
|
||
|
||
section product
|
||
variables {A B : Type}
|
||
definition product (s₁ : finset A) (s₂ : finset B) : finset (A × B) :=
|
||
quot.lift_on₂ s₁ s₂
|
||
(λ l₁ l₂,
|
||
to_finset_of_nodup (list.product (elt_of l₁) (elt_of l₂))
|
||
(nodup_product (has_property l₁) (has_property l₂)))
|
||
(λ v₁ v₂ w₁ w₂ p₁ p₂, quot.sound (perm_product p₁ p₂))
|
||
|
||
infix * := product
|
||
|
||
theorem empty_product (s : finset B) : @empty A * s = ∅ :=
|
||
quot.induction_on s (λ l, rfl)
|
||
|
||
theorem mem_product {a : A} {b : B} {s₁ : finset A} {s₂ : finset B}
|
||
: a ∈ s₁ → b ∈ s₂ → (a, b) ∈ s₁ * s₂ :=
|
||
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ i₁ i₂, list.mem_product i₁ i₂)
|
||
|
||
theorem mem_of_mem_product_left {a : A} {b : B} {s₁ : finset A} {s₂ : finset B}
|
||
: (a, b) ∈ s₁ * s₂ → a ∈ s₁ :=
|
||
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ i, list.mem_of_mem_product_left i)
|
||
|
||
theorem mem_of_mem_product_right {a : A} {b : B} {s₁ : finset A} {s₂ : finset B}
|
||
: (a, b) ∈ s₁ * s₂ → b ∈ s₂ :=
|
||
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ i, list.mem_of_mem_product_right i)
|
||
|
||
theorem product_empty (s : finset A) : s * @empty B = ∅ :=
|
||
ext (λ p,
|
||
match p with
|
||
| (a, b) := iff.intro
|
||
(λ i, absurd (mem_of_mem_product_right i) !not_mem_empty)
|
||
(λ i, absurd i !not_mem_empty)
|
||
end)
|
||
end product
|
||
end finset
|