84 lines
3.1 KiB
Text
84 lines
3.1 KiB
Text
/-
|
||
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Floris van Doorn
|
||
|
||
homotopy groups of a pointed space
|
||
-/
|
||
|
||
import types.pointed .trunc_group .hott types.trunc
|
||
|
||
open nat eq pointed trunc is_trunc algebra
|
||
|
||
namespace eq
|
||
|
||
definition homotopy_group [reducible] (n : ℕ) (A : Type*) : Type :=
|
||
trunc 0 (Ω[n] A)
|
||
|
||
notation `π[`:95 n:0 `] `:0 A:95 := homotopy_group n A
|
||
|
||
definition pointed_homotopy_group [instance] [constructor] (n : ℕ) (A : Type*)
|
||
: pointed (π[n] A) :=
|
||
pointed.mk (tr rfln)
|
||
|
||
definition group_homotopy_group [instance] [constructor] (n : ℕ) (A : Type*)
|
||
: group (π[succ n] A) :=
|
||
trunc_group concat inverse idp con.assoc idp_con con_idp con.left_inv
|
||
|
||
definition comm_group_homotopy_group [constructor] (n : ℕ) (A : Type*)
|
||
: comm_group (π[succ (succ n)] A) :=
|
||
trunc_comm_group concat inverse idp con.assoc idp_con con_idp con.left_inv eckmann_hilton
|
||
|
||
local attribute comm_group_homotopy_group [instance]
|
||
|
||
definition Pointed_homotopy_group [constructor] (n : ℕ) (A : Type*) : Type* :=
|
||
pointed.Mk (π[n] A)
|
||
|
||
definition Group_homotopy_group [constructor] (n : ℕ) (A : Type*) : Group :=
|
||
Group.mk (π[succ n] A) _
|
||
|
||
definition CommGroup_homotopy_group [constructor] (n : ℕ) (A : Type*) : CommGroup :=
|
||
CommGroup.mk (π[succ (succ n)] A) _
|
||
|
||
definition fundamental_group [constructor] (A : Type*) : Group :=
|
||
Group_homotopy_group zero A
|
||
|
||
notation `πP[`:95 n:0 `] `:0 A:95 := Pointed_homotopy_group n A
|
||
notation `πG[`:95 n:0 ` +1] `:0 A:95 := Group_homotopy_group n A
|
||
notation `πaG[`:95 n:0 ` +2] `:0 A:95 := CommGroup_homotopy_group n A
|
||
|
||
prefix `π₁`:95 := fundamental_group
|
||
|
||
open equiv unit
|
||
theorem trivial_homotopy_of_is_set (A : Type*) [H : is_set A] (n : ℕ) : πG[n+1] A = G0 :=
|
||
begin
|
||
apply trivial_group_of_is_contr,
|
||
apply is_trunc_trunc_of_is_trunc,
|
||
apply is_contr_loop_of_is_trunc,
|
||
apply is_trunc_succ_succ_of_is_set
|
||
end
|
||
|
||
definition homotopy_group_succ_out (A : Type*) (n : ℕ) : πG[ n +1] A = π₁ Ω[n] A := idp
|
||
|
||
definition homotopy_group_succ_in (A : Type*) (n : ℕ) : πG[succ n +1] A = πG[n +1] Ω A :=
|
||
begin
|
||
fapply Group_eq,
|
||
{ apply equiv_of_eq, exact ap (λ(X : Type*), trunc 0 X) (loop_space_succ_eq_in A (succ n))},
|
||
{ exact abstract [irreducible] begin refine trunc.rec _, intro p, refine trunc.rec _, intro q,
|
||
rewrite [▸*,-+tr_eq_cast_ap, +trunc_transport], refine !trunc_transport ⬝ _, apply ap tr,
|
||
apply loop_space_succ_eq_in_concat end end},
|
||
end
|
||
|
||
definition homotopy_group_add (A : Type*) (n m : ℕ) : πG[n+m +1] A = πG[n +1] Ω[m] A :=
|
||
begin
|
||
revert A, induction m with m IH: intro A,
|
||
{ reflexivity},
|
||
{ esimp [Iterated_loop_space, nat.add], refine !homotopy_group_succ_in ⬝ _, refine !IH ⬝ _,
|
||
exact ap (Group_homotopy_group n) !loop_space_succ_eq_in⁻¹}
|
||
end
|
||
|
||
theorem trivial_homotopy_of_is_set_loop_space {A : Type*} {n : ℕ} (m : ℕ) (H : is_set (Ω[n] A))
|
||
: πG[m+n+1] A = G0 :=
|
||
!homotopy_group_add ⬝ !trivial_homotopy_of_is_set
|
||
|
||
end eq
|