264 lines
9.1 KiB
Text
264 lines
9.1 KiB
Text
/-
|
||
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Author: Floris van Doorn
|
||
|
||
Ported from Coq HoTT
|
||
Theorems about embeddings and surjections
|
||
-/
|
||
|
||
import hit.trunc types.equiv cubical.square
|
||
|
||
open equiv sigma sigma.ops eq trunc is_trunc pi is_equiv fiber prod
|
||
|
||
variables {A B : Type} (f : A → B) {b : B}
|
||
|
||
definition is_embedding [class] (f : A → B) := Π(a a' : A), is_equiv (ap f : a = a' → f a = f a')
|
||
|
||
definition is_surjective [class] (f : A → B) := Π(b : B), ∥ fiber f b ∥
|
||
|
||
definition is_split_surjective [class] (f : A → B) := Π(b : B), fiber f b
|
||
|
||
structure is_retraction [class] (f : A → B) :=
|
||
(sect : B → A)
|
||
(right_inverse : Π(b : B), f (sect b) = b)
|
||
|
||
structure is_section [class] (f : A → B) :=
|
||
(retr : B → A)
|
||
(left_inverse : Π(a : A), retr (f a) = a)
|
||
|
||
definition is_weakly_constant [class] (f : A → B) := Π(a a' : A), f a = f a'
|
||
|
||
structure is_constant [class] (f : A → B) :=
|
||
(pt : B)
|
||
(eq : Π(a : A), f a = pt)
|
||
|
||
structure is_conditionally_constant [class] (f : A → B) :=
|
||
(g : ∥A∥ → B)
|
||
(eq : Π(a : A), f a = g (tr a))
|
||
|
||
namespace function
|
||
|
||
abbreviation sect [unfold 4] := @is_retraction.sect
|
||
abbreviation right_inverse [unfold 4] := @is_retraction.right_inverse
|
||
abbreviation retr [unfold 4] := @is_section.retr
|
||
abbreviation left_inverse [unfold 4] := @is_section.left_inverse
|
||
|
||
definition is_equiv_ap_of_embedding [instance] [H : is_embedding f] (a a' : A)
|
||
: is_equiv (ap f : a = a' → f a = f a') :=
|
||
H a a'
|
||
|
||
definition ap_inv_idp {a : A} {H : is_equiv (ap f : a = a → f a = f a)}
|
||
: (ap f)⁻¹ᶠ idp = idp :> a = a :=
|
||
!left_inv
|
||
|
||
variable {f}
|
||
definition is_injective_of_is_embedding [reducible] [H : is_embedding f] {a a' : A}
|
||
: f a = f a' → a = a' :=
|
||
(ap f)⁻¹
|
||
|
||
definition is_embedding_of_is_injective [HA : is_set A] [HB : is_set B]
|
||
(H : Π(a a' : A), f a = f a' → a = a') : is_embedding f :=
|
||
begin
|
||
intro a a',
|
||
fapply adjointify,
|
||
{exact (H a a')},
|
||
{intro p, apply is_set.elim},
|
||
{intro p, apply is_set.elim}
|
||
end
|
||
|
||
variable (f)
|
||
|
||
definition is_prop_is_embedding [instance] : is_prop (is_embedding f) :=
|
||
by unfold is_embedding; exact _
|
||
|
||
definition is_embedding_equiv_is_injective [HA : is_set A] [HB : is_set B]
|
||
: is_embedding f ≃ (Π(a a' : A), f a = f a' → a = a') :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{ apply @is_injective_of_is_embedding},
|
||
{ apply is_embedding_of_is_injective},
|
||
{ intro H, apply is_prop.elim},
|
||
{ intro H, apply is_prop.elim, }
|
||
end
|
||
|
||
definition is_prop_fiber_of_is_embedding [H : is_embedding f] (b : B) :
|
||
is_prop (fiber f b) :=
|
||
begin
|
||
apply is_prop.mk, intro v w,
|
||
induction v with a p, induction w with a' q, induction q,
|
||
fapply fiber_eq,
|
||
{ esimp, apply is_injective_of_is_embedding p},
|
||
{ esimp [is_injective_of_is_embedding], symmetry, apply right_inv}
|
||
end
|
||
|
||
definition is_prop_fun_of_is_embedding [H : is_embedding f] : is_trunc_fun -1 f :=
|
||
is_prop_fiber_of_is_embedding f
|
||
|
||
definition is_embedding_of_is_prop_fun [constructor] [H : is_trunc_fun -1 f] : is_embedding f :=
|
||
begin
|
||
intro a a', fapply adjointify,
|
||
{ intro p, exact ap point (@is_prop.elim (fiber f (f a')) _ (fiber.mk a p) (fiber.mk a' idp))},
|
||
{ intro p, rewrite [-ap_compose], esimp, apply ap_con_eq (@point_eq _ _ f (f a'))},
|
||
{ intro p, induction p, apply ap (ap point), apply is_prop_elim_self}
|
||
end
|
||
|
||
variable {f}
|
||
definition is_surjective_rec_on {P : Type} (H : is_surjective f) (b : B) [Pt : is_prop P]
|
||
(IH : fiber f b → P) : P :=
|
||
trunc.rec_on (H b) IH
|
||
variable (f)
|
||
|
||
definition is_surjective_of_is_split_surjective [instance] [H : is_split_surjective f]
|
||
: is_surjective f :=
|
||
λb, tr (H b)
|
||
|
||
definition is_prop_is_surjective [instance] : is_prop (is_surjective f) :=
|
||
by unfold is_surjective; exact _
|
||
|
||
definition is_weakly_constant_ap [instance] [H : is_weakly_constant f] (a a' : A) :
|
||
is_weakly_constant (ap f : a = a' → f a = f a') :=
|
||
take p q : a = a',
|
||
have Π{b c : A} {r : b = c}, (H a b)⁻¹ ⬝ H a c = ap f r, from
|
||
(λb c r, eq.rec_on r !con.left_inv),
|
||
this⁻¹ ⬝ this
|
||
|
||
definition is_constant_ap [unfold 4] [instance] [H : is_constant f] (a a' : A)
|
||
: is_constant (ap f : a = a' → f a = f a') :=
|
||
begin
|
||
induction H with b q,
|
||
fapply is_constant.mk,
|
||
{ exact q a ⬝ (q a')⁻¹},
|
||
{ intro p, induction p, exact !con.right_inv⁻¹}
|
||
end
|
||
|
||
definition is_contr_is_retraction [instance] [H : is_equiv f] : is_contr (is_retraction f) :=
|
||
begin
|
||
have H2 : (Σ(g : B → A), Πb, f (g b) = b) ≃ is_retraction f,
|
||
begin
|
||
fapply equiv.MK,
|
||
{intro x, induction x with g p, constructor, exact p},
|
||
{intro h, induction h, apply sigma.mk, assumption},
|
||
{intro h, induction h, reflexivity},
|
||
{intro x, induction x, reflexivity},
|
||
end,
|
||
apply is_trunc_equiv_closed, exact H2,
|
||
apply is_equiv.is_contr_right_inverse
|
||
end
|
||
|
||
definition is_contr_is_section [instance] [H : is_equiv f] : is_contr (is_section f) :=
|
||
begin
|
||
have H2 : (Σ(g : B → A), Πa, g (f a) = a) ≃ is_section f,
|
||
begin
|
||
fapply equiv.MK,
|
||
{intro x, induction x with g p, constructor, exact p},
|
||
{intro h, induction h, apply sigma.mk, assumption},
|
||
{intro h, induction h, reflexivity},
|
||
{intro x, induction x, reflexivity},
|
||
end,
|
||
apply is_trunc_equiv_closed, exact H2,
|
||
fapply is_trunc_equiv_closed,
|
||
{apply sigma_equiv_sigma_id, intro g, apply eq_equiv_homotopy},
|
||
fapply is_trunc_equiv_closed,
|
||
{apply fiber.sigma_char},
|
||
fapply is_contr_fiber_of_is_equiv,
|
||
exact to_is_equiv (arrow_equiv_arrow_left_rev A (equiv.mk f H)),
|
||
end
|
||
|
||
definition is_embedding_of_is_equiv [instance] [H : is_equiv f] : is_embedding f :=
|
||
λa a', _
|
||
|
||
definition is_equiv_of_is_surjective_of_is_embedding
|
||
[H : is_embedding f] [H' : is_surjective f] : is_equiv f :=
|
||
@is_equiv_of_is_contr_fun _ _ _
|
||
(λb, is_surjective_rec_on H' b
|
||
(λa, is_contr.mk a
|
||
(λa',
|
||
fiber_eq ((ap f)⁻¹ ((point_eq a) ⬝ (point_eq a')⁻¹))
|
||
(by rewrite (right_inv (ap f)); rewrite inv_con_cancel_right))))
|
||
|
||
definition is_split_surjective_of_is_retraction [H : is_retraction f] : is_split_surjective f :=
|
||
λb, fiber.mk (sect f b) (right_inverse f b)
|
||
|
||
definition is_constant_compose_point [constructor] [instance] (b : B)
|
||
: is_constant (f ∘ point : fiber f b → B) :=
|
||
is_constant.mk b (λv, by induction v with a p;exact p)
|
||
|
||
definition is_embedding_of_is_prop_fiber [H : Π(b : B), is_prop (fiber f b)] : is_embedding f :=
|
||
is_embedding_of_is_prop_fun _
|
||
|
||
definition is_retraction_of_is_equiv [instance] [H : is_equiv f] : is_retraction f :=
|
||
is_retraction.mk f⁻¹ (right_inv f)
|
||
|
||
definition is_section_of_is_equiv [instance] [H : is_equiv f] : is_section f :=
|
||
is_section.mk f⁻¹ (left_inv f)
|
||
|
||
definition is_equiv_of_is_section_of_is_retraction [H1 : is_retraction f] [H2 : is_section f]
|
||
: is_equiv f :=
|
||
let g := sect f in let h := retr f in
|
||
adjointify f
|
||
g
|
||
(right_inverse f)
|
||
(λa, calc
|
||
g (f a) = h (f (g (f a))) : left_inverse
|
||
... = h (f a) : right_inverse f
|
||
... = a : left_inverse)
|
||
|
||
section
|
||
local attribute is_equiv_of_is_section_of_is_retraction [instance] [priority 10000]
|
||
local attribute trunctype.struct [instance] [priority 1] -- remove after #842 is closed
|
||
variable (f)
|
||
definition is_prop_is_retraction_prod_is_section : is_prop (is_retraction f × is_section f) :=
|
||
begin
|
||
apply is_prop_of_imp_is_contr, intro H, induction H with H1 H2,
|
||
exact _,
|
||
end
|
||
end
|
||
|
||
definition is_retraction_trunc_functor [instance] (r : A → B) [H : is_retraction r]
|
||
(n : trunc_index) : is_retraction (trunc_functor n r) :=
|
||
is_retraction.mk
|
||
(trunc_functor n (sect r))
|
||
(λb,
|
||
((trunc_functor_compose n (sect r) r) b)⁻¹
|
||
⬝ trunc_homotopy n (right_inverse r) b
|
||
⬝ trunc_functor_id B n b)
|
||
|
||
-- Lemma 3.11.7
|
||
definition is_contr_retract (r : A → B) [H : is_retraction r] : is_contr A → is_contr B :=
|
||
begin
|
||
intro CA,
|
||
apply is_contr.mk (r (center A)),
|
||
intro b,
|
||
exact ap r (center_eq (is_retraction.sect r b)) ⬝ (is_retraction.right_inverse r b)
|
||
end
|
||
|
||
local attribute is_prop_is_retraction_prod_is_section [instance]
|
||
definition is_retraction_prod_is_section_equiv_is_equiv [constructor]
|
||
: (is_retraction f × is_section f) ≃ is_equiv f :=
|
||
begin
|
||
apply equiv_of_is_prop,
|
||
intro H, induction H, apply is_equiv_of_is_section_of_is_retraction,
|
||
intro H, split, repeat exact _
|
||
end
|
||
|
||
definition is_retraction_equiv_is_split_surjective :
|
||
is_retraction f ≃ is_split_surjective f :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{ intro H, induction H with g p, intro b, constructor, exact p b},
|
||
{ intro H, constructor, intro b, exact point_eq (H b)},
|
||
{ intro H, esimp, apply eq_of_homotopy, intro b, esimp, induction H b, reflexivity},
|
||
{ intro H, induction H with g p, reflexivity},
|
||
end
|
||
|
||
/-
|
||
The definitions
|
||
is_surjective_of_is_equiv
|
||
is_equiv_equiv_is_embedding_times_is_surjective
|
||
are in types.trunc
|
||
|
||
See types.arrow_2 for retractions
|
||
-/
|
||
|
||
end function
|