486 lines
18 KiB
Text
486 lines
18 KiB
Text
/-
|
||
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Author: Leonardo de Moura, Jeremy Avigad
|
||
|
||
Combinators for finite sets.
|
||
-/
|
||
import data.finset.basic logic.identities
|
||
open list quot subtype decidable perm function
|
||
|
||
namespace finset
|
||
|
||
/- image (corresponds to map on list) -/
|
||
section image
|
||
variables {A B : Type}
|
||
variable [h : decidable_eq B]
|
||
include h
|
||
|
||
definition image (f : A → B) (s : finset A) : finset B :=
|
||
quot.lift_on s
|
||
(λ l, to_finset (list.map f (elt_of l)))
|
||
(λ l₁ l₂ p, quot.sound (perm_erase_dup_of_perm (perm_map _ p)))
|
||
notation [priority finset.prio] f `'[`:max a `]` := image f a
|
||
|
||
theorem image_empty (f : A → B) : image f ∅ = ∅ :=
|
||
rfl
|
||
|
||
theorem mem_image_of_mem (f : A → B) {s : finset A} {a : A} : a ∈ s → f a ∈ image f s :=
|
||
quot.induction_on s (take l, assume H : a ∈ elt_of l, mem_to_finset (mem_map f H))
|
||
|
||
theorem mem_image {f : A → B} {s : finset A} {a : A} {b : B}
|
||
(H1 : a ∈ s) (H2 : f a = b) :
|
||
b ∈ image f s :=
|
||
eq.subst H2 (mem_image_of_mem f H1)
|
||
|
||
theorem exists_of_mem_image {f : A → B} {s : finset A} {b : B} :
|
||
b ∈ image f s → ∃a, a ∈ s ∧ f a = b :=
|
||
quot.induction_on s
|
||
(take l, assume H : b ∈ erase_dup (list.map f (elt_of l)),
|
||
exists_of_mem_map (mem_of_mem_erase_dup H))
|
||
|
||
theorem mem_image_iff (f : A → B) {s : finset A} {y : B} : y ∈ image f s ↔ ∃x, x ∈ s ∧ f x = y :=
|
||
iff.intro exists_of_mem_image
|
||
(assume H,
|
||
obtain x (H₁ : x ∈ s) (H₂ : f x = y), from H,
|
||
mem_image H₁ H₂)
|
||
|
||
theorem mem_image_eq (f : A → B) {s : finset A} {y : B} : y ∈ image f s = ∃x, x ∈ s ∧ f x = y :=
|
||
propext (mem_image_iff f)
|
||
|
||
theorem mem_image_of_mem_image_of_subset {f : A → B} {s t : finset A} {y : B}
|
||
(H1 : y ∈ image f s) (H2 : s ⊆ t) : y ∈ image f t :=
|
||
obtain x (H3: x ∈ s) (H4 : f x = y), from exists_of_mem_image H1,
|
||
have H5 : x ∈ t, from mem_of_subset_of_mem H2 H3,
|
||
show y ∈ image f t, from mem_image H5 H4
|
||
|
||
theorem image_insert [h' : decidable_eq A] (f : A → B) (s : finset A) (a : A) :
|
||
image f (insert a s) = insert (f a) (image f s) :=
|
||
ext (take y, iff.intro
|
||
(assume H : y ∈ image f (insert a s),
|
||
obtain x (H1l : x ∈ insert a s) (H1r :f x = y), from exists_of_mem_image H,
|
||
have x = a ∨ x ∈ s, from eq_or_mem_of_mem_insert H1l,
|
||
or.elim this
|
||
(suppose x = a,
|
||
have f a = y, from eq.subst this H1r,
|
||
show y ∈ insert (f a) (image f s), from eq.subst this !mem_insert)
|
||
(suppose x ∈ s,
|
||
have f x ∈ image f s, from mem_image_of_mem f this,
|
||
show y ∈ insert (f a) (image f s), from eq.subst H1r (mem_insert_of_mem _ this)))
|
||
(suppose y ∈ insert (f a) (image f s),
|
||
have y = f a ∨ y ∈ image f s, from eq_or_mem_of_mem_insert this,
|
||
or.elim this
|
||
(suppose y = f a,
|
||
have f a ∈ image f (insert a s), from mem_image_of_mem f !mem_insert,
|
||
show y ∈ image f (insert a s), from eq.subst (eq.symm `y = f a`) this)
|
||
(suppose y ∈ image f s,
|
||
show y ∈ image f (insert a s), from mem_image_of_mem_image_of_subset this !subset_insert)))
|
||
|
||
lemma image_compose {C : Type} [deceqC : decidable_eq C] {f : B → C} {g : A → B} {s : finset A} :
|
||
image (f∘g) s = image f (image g s) :=
|
||
ext (take z, iff.intro
|
||
(suppose z ∈ image (f∘g) s,
|
||
obtain x (Hx : x ∈ s) (Hgfx : f (g x) = z), from exists_of_mem_image this,
|
||
by rewrite -Hgfx; apply mem_image_of_mem _ (mem_image_of_mem _ Hx))
|
||
(suppose z ∈ image f (image g s),
|
||
obtain y (Hy : y ∈ image g s) (Hfy : f y = z), from exists_of_mem_image this,
|
||
obtain x (Hx : x ∈ s) (Hgx : g x = y), from exists_of_mem_image Hy,
|
||
mem_image Hx (by esimp; rewrite [Hgx, Hfy])))
|
||
|
||
lemma image_subset {a b : finset A} (f : A → B) (H : a ⊆ b) : f '[a] ⊆ f '[b] :=
|
||
subset_of_forall
|
||
(take y, assume Hy : y ∈ f '[a],
|
||
obtain x (Hx₁ : x ∈ a) (Hx₂ : f x = y), from exists_of_mem_image Hy,
|
||
mem_image (mem_of_subset_of_mem H Hx₁) Hx₂)
|
||
|
||
theorem image_union [h' : decidable_eq A] (f : A → B) (s t : finset A) :
|
||
image f (s ∪ t) = image f s ∪ image f t :=
|
||
ext (take y, iff.intro
|
||
(assume H : y ∈ image f (s ∪ t),
|
||
obtain x [(xst : x ∈ s ∪ t) (fxy : f x = y)], from exists_of_mem_image H,
|
||
or.elim (mem_or_mem_of_mem_union xst)
|
||
(assume xs, mem_union_l (mem_image xs fxy))
|
||
(assume xt, mem_union_r (mem_image xt fxy)))
|
||
(assume H : y ∈ image f s ∪ image f t,
|
||
or.elim (mem_or_mem_of_mem_union H)
|
||
(assume yifs : y ∈ image f s,
|
||
obtain x [(xs : x ∈ s) (fxy : f x = y)], from exists_of_mem_image yifs,
|
||
mem_image (mem_union_l xs) fxy)
|
||
(assume yift : y ∈ image f t,
|
||
obtain x [(xt : x ∈ t) (fxy : f x = y)], from exists_of_mem_image yift,
|
||
mem_image (mem_union_r xt) fxy)))
|
||
end image
|
||
|
||
/- separation and set-builder notation -/
|
||
section sep
|
||
variables {A : Type} [deceq : decidable_eq A]
|
||
include deceq
|
||
variables (p : A → Prop) [decp : decidable_pred p] (s : finset A) {x : A}
|
||
include decp
|
||
|
||
definition sep : finset A :=
|
||
quot.lift_on s
|
||
(λl, to_finset_of_nodup
|
||
(list.filter p (subtype.elt_of l))
|
||
(list.nodup_filter p (subtype.has_property l)))
|
||
(λ l₁ l₂ u, quot.sound (perm.perm_filter u))
|
||
|
||
notation [priority finset.prio] `{` binder ` ∈ ` s ` | ` r:(scoped:1 p, sep p s) `}` := r
|
||
|
||
theorem sep_empty : sep p ∅ = ∅ := rfl
|
||
|
||
variables {p s}
|
||
|
||
theorem of_mem_sep : x ∈ sep p s → p x :=
|
||
quot.induction_on s (take l, list.of_mem_filter)
|
||
|
||
theorem mem_of_mem_sep : x ∈ sep p s → x ∈ s :=
|
||
quot.induction_on s (take l, list.mem_of_mem_filter)
|
||
|
||
theorem mem_sep_of_mem {x : A} : x ∈ s → p x → x ∈ sep p s :=
|
||
quot.induction_on s (take l, list.mem_filter_of_mem)
|
||
|
||
variables (p s)
|
||
|
||
theorem mem_sep_iff : x ∈ sep p s ↔ x ∈ s ∧ p x :=
|
||
iff.intro
|
||
(assume H, and.intro (mem_of_mem_sep H) (of_mem_sep H))
|
||
(assume H, mem_sep_of_mem (and.left H) (and.right H))
|
||
|
||
theorem mem_sep_eq : x ∈ sep p s = (x ∈ s ∧ p x) :=
|
||
propext !mem_sep_iff
|
||
|
||
variable t : finset A
|
||
|
||
theorem mem_sep_union_iff : x ∈ sep p (s ∪ t) ↔ x ∈ sep p s ∨ x ∈ sep p t :=
|
||
by rewrite [*mem_sep_iff, mem_union_iff, and.right_distrib]
|
||
|
||
end sep
|
||
|
||
section
|
||
|
||
variables {A : Type} [deceqA : decidable_eq A]
|
||
include deceqA
|
||
|
||
theorem eq_sep_of_subset {s t : finset A} (ssubt : s ⊆ t) : s = {x ∈ t | x ∈ s} :=
|
||
ext (take x, iff.intro
|
||
(suppose x ∈ s, mem_sep_of_mem (mem_of_subset_of_mem ssubt this) this)
|
||
(suppose x ∈ {x ∈ t | x ∈ s}, of_mem_sep this))
|
||
|
||
theorem mem_singleton_eq' (x a : A) : x ∈ '{a} = (x = a) :=
|
||
by rewrite [mem_insert_eq, mem_empty_eq, or_false]
|
||
|
||
end
|
||
|
||
/- set difference -/
|
||
section diff
|
||
variables {A : Type} [deceq : decidable_eq A]
|
||
include deceq
|
||
|
||
definition diff (s t : finset A) : finset A := {x ∈ s | x ∉ t}
|
||
infix [priority finset.prio] ` \ `:70 := diff
|
||
|
||
theorem mem_of_mem_diff {s t : finset A} {x : A} (H : x ∈ s \ t) : x ∈ s :=
|
||
mem_of_mem_sep H
|
||
|
||
theorem not_mem_of_mem_diff {s t : finset A} {x : A} (H : x ∈ s \ t) : x ∉ t :=
|
||
of_mem_sep H
|
||
|
||
theorem mem_diff {s t : finset A} {x : A} (H1 : x ∈ s) (H2 : x ∉ t) : x ∈ s \ t :=
|
||
mem_sep_of_mem H1 H2
|
||
|
||
theorem mem_diff_iff (s t : finset A) (x : A) : x ∈ s \ t ↔ x ∈ s ∧ x ∉ t :=
|
||
iff.intro
|
||
(assume H, and.intro (mem_of_mem_diff H) (not_mem_of_mem_diff H))
|
||
(assume H, mem_diff (and.left H) (and.right H))
|
||
|
||
theorem mem_diff_eq (s t : finset A) (x : A) : x ∈ s \ t = (x ∈ s ∧ x ∉ t) :=
|
||
propext !mem_diff_iff
|
||
|
||
theorem union_diff_cancel {s t : finset A} (H : s ⊆ t) : s ∪ (t \ s) = t :=
|
||
ext (take x, iff.intro
|
||
(suppose x ∈ s ∪ (t \ s),
|
||
or.elim (mem_or_mem_of_mem_union this)
|
||
(suppose x ∈ s, mem_of_subset_of_mem H this)
|
||
(suppose x ∈ t \ s, mem_of_mem_diff this))
|
||
(suppose x ∈ t,
|
||
decidable.by_cases
|
||
(suppose x ∈ s, mem_union_left _ this)
|
||
(suppose x ∉ s, mem_union_right _ (mem_diff `x ∈ t` this))))
|
||
|
||
theorem diff_union_cancel {s t : finset A} (H : s ⊆ t) : (t \ s) ∪ s = t :=
|
||
eq.subst !union.comm (!union_diff_cancel H)
|
||
end diff
|
||
|
||
/- set complement -/
|
||
section complement
|
||
|
||
variables {A : Type} [deceqA : decidable_eq A] [h : fintype A]
|
||
include deceqA h
|
||
|
||
definition complement (s : finset A) : finset A := univ \ s
|
||
prefix [priority finset.prio] - := complement
|
||
|
||
theorem mem_complement {s : finset A} {x : A} (H : x ∉ s) : x ∈ -s :=
|
||
mem_diff !mem_univ H
|
||
|
||
theorem not_mem_of_mem_complement {s : finset A} {x : A} (H : x ∈ -s) : x ∉ s :=
|
||
not_mem_of_mem_diff H
|
||
|
||
theorem mem_complement_iff (s : finset A) (x : A) : x ∈ -s ↔ x ∉ s :=
|
||
iff.intro not_mem_of_mem_complement mem_complement
|
||
|
||
section
|
||
open classical
|
||
|
||
theorem union_eq_comp_comp_inter_comp (s t : finset A) : s ∪ t = -(-s ∩ -t) :=
|
||
ext (take x, by rewrite [mem_union_iff, mem_complement_iff, mem_inter_iff, *mem_complement_iff,
|
||
or_iff_not_and_not])
|
||
|
||
theorem inter_eq_comp_comp_union_comp (s t : finset A) : s ∩ t = -(-s ∪ -t) :=
|
||
ext (take x, by rewrite [mem_inter_iff, mem_complement_iff, mem_union_iff, *mem_complement_iff,
|
||
and_iff_not_or_not])
|
||
end
|
||
|
||
end complement
|
||
|
||
/- all -/
|
||
section all
|
||
variables {A : Type}
|
||
definition all (s : finset A) (p : A → Prop) : Prop :=
|
||
quot.lift_on s
|
||
(λ l, all (elt_of l) p)
|
||
(λ l₁ l₂ p, foldr_eq_of_perm (λ a₁ a₂ q, propext !and.left_comm) p true)
|
||
|
||
theorem all_empty (p : A → Prop) : all ∅ p = true :=
|
||
rfl
|
||
|
||
theorem of_mem_of_all {p : A → Prop} {a : A} {s : finset A} : a ∈ s → all s p → p a :=
|
||
quot.induction_on s (λ l i h, list.of_mem_of_all i h)
|
||
|
||
theorem forall_of_all {p : A → Prop} {s : finset A} (H : all s p) : ∀{a}, a ∈ s → p a :=
|
||
λ a H', of_mem_of_all H' H
|
||
|
||
theorem all_of_forall {p : A → Prop} {s : finset A} : (∀a, a ∈ s → p a) → all s p :=
|
||
quot.induction_on s (λ l H, list.all_of_forall H)
|
||
|
||
theorem all_iff_forall (p : A → Prop) (s : finset A) : all s p ↔ (∀a, a ∈ s → p a) :=
|
||
iff.intro forall_of_all all_of_forall
|
||
|
||
definition decidable_all [instance] (p : A → Prop) [h : decidable_pred p] (s : finset A) :
|
||
decidable (all s p) :=
|
||
quot.rec_on_subsingleton s (λ l, list.decidable_all p (elt_of l))
|
||
|
||
theorem all_implies {p q : A → Prop} {s : finset A} : all s p → (∀ x, p x → q x) → all s q :=
|
||
quot.induction_on s (λ l h₁ h₂, list.all_implies h₁ h₂)
|
||
|
||
variable [h : decidable_eq A]
|
||
include h
|
||
|
||
theorem all_union {p : A → Prop} {s₁ s₂ : finset A} : all s₁ p → all s₂ p → all (s₁ ∪ s₂) p :=
|
||
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ a₁ a₂, all_union a₁ a₂)
|
||
|
||
theorem all_of_all_union_left {p : A → Prop} {s₁ s₂ : finset A} : all (s₁ ∪ s₂) p → all s₁ p :=
|
||
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ a, list.all_of_all_union_left a)
|
||
|
||
theorem all_of_all_union_right {p : A → Prop} {s₁ s₂ : finset A} : all (s₁ ∪ s₂) p → all s₂ p :=
|
||
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ a, list.all_of_all_union_right a)
|
||
|
||
theorem all_insert_of_all {p : A → Prop} {a : A} {s : finset A} : p a → all s p → all (insert a s) p :=
|
||
quot.induction_on s (λ l h₁ h₂, list.all_insert_of_all h₁ h₂)
|
||
|
||
theorem all_erase_of_all {p : A → Prop} (a : A) {s : finset A}: all s p → all (erase a s) p :=
|
||
quot.induction_on s (λ l h, list.all_erase_of_all a h)
|
||
|
||
theorem all_inter_of_all_left {p : A → Prop} {s₁ : finset A} (s₂ : finset A) : all s₁ p → all (s₁ ∩ s₂) p :=
|
||
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ h, list.all_inter_of_all_left _ h)
|
||
|
||
theorem all_inter_of_all_right {p : A → Prop} {s₁ : finset A} (s₂ : finset A) : all s₂ p → all (s₁ ∩ s₂) p :=
|
||
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ h, list.all_inter_of_all_right _ h)
|
||
|
||
theorem subset_iff_all (s t : finset A) : s ⊆ t ↔ all s (λ x, x ∈ t) :=
|
||
iff.intro
|
||
(suppose s ⊆ t, all_of_forall (take x, suppose x ∈ s, mem_of_subset_of_mem `s ⊆ t` `x ∈ s`))
|
||
(suppose all s (λ x, x ∈ t), subset_of_forall (take x, suppose x ∈ s, of_mem_of_all `x ∈ s` `all s (λ x, x ∈ t)`))
|
||
|
||
definition decidable_subset [instance] (s t : finset A) : decidable (s ⊆ t) :=
|
||
decidable_of_decidable_of_iff _ (iff.symm !subset_iff_all)
|
||
end all
|
||
|
||
/- any -/
|
||
section any
|
||
variables {A : Type}
|
||
definition any (s : finset A) (p : A → Prop) : Prop :=
|
||
quot.lift_on s
|
||
(λ l, any (elt_of l) p)
|
||
(λ l₁ l₂ p, foldr_eq_of_perm (λ a₁ a₂ q, propext !or.left_comm) p false)
|
||
|
||
theorem any_empty (p : A → Prop) : any ∅ p = false := rfl
|
||
|
||
theorem exists_of_any {p : A → Prop} {s : finset A} : any s p → ∃a, a ∈ s ∧ p a :=
|
||
quot.induction_on s (λ l H, list.exists_of_any H)
|
||
|
||
theorem any_of_mem {p : A → Prop} {s : finset A} {a : A} : a ∈ s → p a → any s p :=
|
||
quot.induction_on s (λ l H1 H2, list.any_of_mem H1 H2)
|
||
|
||
theorem any_of_exists {p : A → Prop} {s : finset A} (H : ∃a, a ∈ s ∧ p a) : any s p :=
|
||
obtain a H₁ H₂, from H,
|
||
any_of_mem H₁ H₂
|
||
|
||
theorem any_iff_exists (p : A → Prop) (s : finset A) : any s p ↔ (∃a, a ∈ s ∧ p a) :=
|
||
iff.intro exists_of_any any_of_exists
|
||
|
||
theorem any_of_insert [h : decidable_eq A] {p : A → Prop} (s : finset A) {a : A} (H : p a) :
|
||
any (insert a s) p :=
|
||
any_of_mem (mem_insert a s) H
|
||
|
||
theorem any_of_insert_right [h : decidable_eq A] {p : A → Prop} {s : finset A} (a : A) (H : any s p) :
|
||
any (insert a s) p :=
|
||
obtain b (H₁ : b ∈ s) (H₂ : p b), from exists_of_any H,
|
||
any_of_mem (mem_insert_of_mem a H₁) H₂
|
||
|
||
definition decidable_any [instance] (p : A → Prop) [h : decidable_pred p] (s : finset A) :
|
||
decidable (any s p) :=
|
||
quot.rec_on_subsingleton s (λ l, list.decidable_any p (elt_of l))
|
||
end any
|
||
|
||
section product
|
||
variables {A B : Type}
|
||
definition product (s₁ : finset A) (s₂ : finset B) : finset (A × B) :=
|
||
quot.lift_on₂ s₁ s₂
|
||
(λ l₁ l₂,
|
||
to_finset_of_nodup (product (elt_of l₁) (elt_of l₂))
|
||
(nodup_product (has_property l₁) (has_property l₂)))
|
||
(λ v₁ v₂ w₁ w₂ p₁ p₂, begin apply @quot.sound, apply perm_product p₁ p₂ end)
|
||
|
||
infix [priority finset.prio] * := product
|
||
|
||
theorem empty_product (s : finset B) : @empty A * s = ∅ :=
|
||
quot.induction_on s (λ l, rfl)
|
||
|
||
theorem mem_product {a : A} {b : B} {s₁ : finset A} {s₂ : finset B}
|
||
: a ∈ s₁ → b ∈ s₂ → (a, b) ∈ s₁ * s₂ :=
|
||
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ i₁ i₂, list.mem_product i₁ i₂)
|
||
|
||
theorem mem_of_mem_product_left {a : A} {b : B} {s₁ : finset A} {s₂ : finset B}
|
||
: (a, b) ∈ s₁ * s₂ → a ∈ s₁ :=
|
||
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ i, list.mem_of_mem_product_left i)
|
||
|
||
theorem mem_of_mem_product_right {a : A} {b : B} {s₁ : finset A} {s₂ : finset B}
|
||
: (a, b) ∈ s₁ * s₂ → b ∈ s₂ :=
|
||
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ i, list.mem_of_mem_product_right i)
|
||
|
||
theorem product_empty (s : finset A) : s * @empty B = ∅ :=
|
||
ext (λ p,
|
||
match p with
|
||
| (a, b) := iff.intro
|
||
(λ i, absurd (mem_of_mem_product_right i) !not_mem_empty)
|
||
(λ i, absurd i !not_mem_empty)
|
||
end)
|
||
end product
|
||
|
||
/- powerset -/
|
||
section powerset
|
||
variables {A : Type} [deceqA : decidable_eq A]
|
||
include deceqA
|
||
|
||
section list_powerset
|
||
open list
|
||
|
||
definition list_powerset : list A → finset (finset A)
|
||
| [] := '{∅}
|
||
| (a :: l) := list_powerset l ∪ image (insert a) (list_powerset l)
|
||
|
||
end list_powerset
|
||
|
||
private theorem image_insert_comm (a b : A) (s : finset (finset A)) :
|
||
image (insert a) (image (insert b) s) = image (insert b) (image (insert a) s) :=
|
||
have aux' : ∀ a b : A, ∀ x : finset A,
|
||
x ∈ image (insert a) (image (insert b) s) →
|
||
x ∈ image (insert b) (image (insert a) s), from
|
||
begin
|
||
intros [a, b, x, H],
|
||
cases (exists_of_mem_image H) with [y, Hy],
|
||
cases Hy with [Hy1, Hy2],
|
||
cases (exists_of_mem_image Hy1) with [z, Hz],
|
||
cases Hz with [Hz1, Hz2],
|
||
substvars,
|
||
rewrite insert.comm,
|
||
repeat (apply mem_image_of_mem),
|
||
assumption
|
||
end,
|
||
ext (take x, iff.intro (aux' a b x) (aux' b a x))
|
||
|
||
theorem list_powerset_eq_list_powerset_of_perm {l₁ l₂ : list A} (p : l₁ ~ l₂) :
|
||
list_powerset l₁ = list_powerset l₂ :=
|
||
perm.induction_on p
|
||
rfl
|
||
(λ x l₁ l₂ p ih, by rewrite [↑list_powerset, ih])
|
||
(λ x y l, by rewrite [↑list_powerset, ↑list_powerset, *image_union, image_insert_comm,
|
||
*union.assoc, union.left_comm (finset.image (finset.insert x) _)])
|
||
(λ l₁ l₂ l₃ p₁ p₂ r₁ r₂, eq.trans r₁ r₂)
|
||
|
||
definition powerset (s : finset A) : finset (finset A) :=
|
||
quot.lift_on s
|
||
(λ l, list_powerset (elt_of l))
|
||
(λ l₁ l₂ p, list_powerset_eq_list_powerset_of_perm p)
|
||
|
||
prefix [priority finset.prio] `𝒫`:100 := powerset
|
||
|
||
theorem powerset_empty : 𝒫 (∅ : finset A) = '{∅} := rfl
|
||
|
||
theorem powerset_insert {a : A} {s : finset A} : a ∉ s → 𝒫 (insert a s) = 𝒫 s ∪ image (insert a) (𝒫 s) :=
|
||
quot.induction_on s
|
||
(λ l,
|
||
assume H : a ∉ quot.mk l,
|
||
calc
|
||
𝒫 (insert a (quot.mk l))
|
||
= list_powerset (list.insert a (elt_of l)) : rfl
|
||
... = list_powerset (#list a :: elt_of l) : by rewrite [list.insert_eq_of_not_mem H]
|
||
... = 𝒫 (quot.mk l) ∪ image (insert a) (𝒫 (quot.mk l)) : rfl)
|
||
|
||
theorem mem_powerset_iff_subset (s : finset A) : ∀ x, x ∈ 𝒫 s ↔ x ⊆ s :=
|
||
begin
|
||
induction s with a s nains ih,
|
||
intro x,
|
||
rewrite powerset_empty,
|
||
show x ∈ '{∅} ↔ x ⊆ ∅, by rewrite [mem_singleton_eq', subset_empty_iff],
|
||
intro x,
|
||
rewrite [powerset_insert nains, mem_union_iff, ih, mem_image_iff],
|
||
exact
|
||
(iff.intro
|
||
(assume H,
|
||
or.elim H
|
||
(suppose x ⊆ s, subset.trans this !subset_insert)
|
||
(suppose ∃ y, y ∈ 𝒫 s ∧ insert a y = x,
|
||
obtain y [yps iay], from this,
|
||
show x ⊆ insert a s,
|
||
begin
|
||
rewrite [-iay],
|
||
apply insert_subset_insert,
|
||
rewrite -ih,
|
||
apply yps
|
||
end))
|
||
(assume H : x ⊆ insert a s,
|
||
assert H' : erase a x ⊆ s, from erase_subset_of_subset_insert H,
|
||
decidable.by_cases
|
||
(suppose a ∈ x,
|
||
or.inr (exists.intro (erase a x)
|
||
(and.intro
|
||
(show erase a x ∈ 𝒫 s, by rewrite ih; apply H')
|
||
(show insert a (erase a x) = x, from insert_erase this))))
|
||
(suppose a ∉ x, or.inl
|
||
(show x ⊆ s, by rewrite [(erase_eq_of_not_mem this) at H']; apply H'))))
|
||
end
|
||
|
||
theorem subset_of_mem_powerset {s t : finset A} (H : s ∈ 𝒫 t) : s ⊆ t :=
|
||
iff.mp (mem_powerset_iff_subset t s) H
|
||
|
||
theorem mem_powerset_of_subset {s t : finset A} (H : s ⊆ t) : s ∈ 𝒫 t :=
|
||
iff.mpr (mem_powerset_iff_subset t s) H
|
||
|
||
theorem empty_mem_powerset (s : finset A) : ∅ ∈ 𝒫 s :=
|
||
mem_powerset_of_subset (empty_subset s)
|
||
|
||
end powerset
|
||
end finset
|