lean2/tests/lean/interactive/num2.input.expected.out
Leonardo de Moura b88b98ac22 feat(frontends/lean): try to add definition/theorem as axiom when it fails to be processed
The idea is to avoid a "tsunami" of error messages when a heavily used
theorem breaks in the beginning of the file
2015-03-13 14:47:21 -07:00

87 lines
4.6 KiB
Text

-- BEGINWAIT
-- ENDWAIT
-- BEGINSET
-- ENDSET
-- BEGINFINDP
pos_num.size|pos_num → pos_num
pos_num.bit0|pos_num → pos_num
pos_num.is_inhabited|inhabited pos_num
pos_num.is_one|pos_num → bool
pos_num.inc|pos_num → pos_num
pos_num.ibelow|pos_num → Prop
pos_num.binduction_on|Π (n : pos_num), (Π (n : pos_num), pos_num.ibelow n → ?C n) → ?C n
pos_num.induction_on|Π (n : pos_num), ?C pos_num.one → (Π (a : pos_num), ?C a → ?C (pos_num.bit1 a)) → (Π (a : pos_num), ?C a → ?C (pos_num.bit0 a)) → ?C n
pos_num.succ|pos_num → pos_num
pos_num.bit1|pos_num → pos_num
pos_num.rec|?C pos_num.one → (Π (a : pos_num), ?C a → ?C (pos_num.bit1 a)) → (Π (a : pos_num), ?C a → ?C (pos_num.bit0 a)) → (Π (n : pos_num), ?C n)
pos_num.one|pos_num
pos_num.below|pos_num → Type
pos_num.le|pos_num → pos_num → bool
pos_num.cases_on|Π (n : pos_num), ?C pos_num.one → (Π (a : pos_num), ?C (pos_num.bit1 a)) → (Π (a : pos_num), ?C (pos_num.bit0 a)) → ?C n
pos_num.pred|pos_num → pos_num
pos_num.mul|pos_num → pos_num → pos_num
pos_num.no_confusion_type|Type → pos_num → pos_num → Type
pos_num.num_bits|pos_num → pos_num
pos_num.no_confusion|eq ?v1 ?v2 → pos_num.no_confusion_type ?P ?v1 ?v2
pos_num.lt|pos_num → pos_num → bool
pos_num.rec_on|Π (n : pos_num), ?C pos_num.one → (Π (a : pos_num), ?C a → ?C (pos_num.bit1 a)) → (Π (a : pos_num), ?C a → ?C (pos_num.bit0 a)) → ?C n
pos_num.brec_on|Π (n : pos_num), (Π (n : pos_num), pos_num.below n → ?C n) → ?C n
pos_num.add|pos_num → pos_num → pos_num
pos_num|Type
-- ENDFINDP
-- BEGINWAIT
-- ENDWAIT
-- BEGINWAIT
-- ENDWAIT
-- BEGINFINDP
pos_num.size|pos_num → pos_num
pos_num.bit0|pos_num → pos_num
pos_num.is_inhabited|inhabited pos_num
pos_num.is_one|pos_num → bool
pos_num.inc|pos_num → pos_num
pos_num.ibelow|pos_num → Prop
pos_num.binduction_on|Π (n : pos_num), (Π (n : pos_num), pos_num.ibelow n → ?C n) → ?C n
pos_num.induction_on|Π (n : pos_num), ?C pos_num.one → (Π (a : pos_num), ?C a → ?C (pos_num.bit1 a)) → (Π (a : pos_num), ?C a → ?C (pos_num.bit0 a)) → ?C n
pos_num.succ|pos_num → pos_num
pos_num.bit1|pos_num → pos_num
pos_num.rec|?C pos_num.one → (Π (a : pos_num), ?C a → ?C (pos_num.bit1 a)) → (Π (a : pos_num), ?C a → ?C (pos_num.bit0 a)) → (Π (n : pos_num), ?C n)
pos_num.one|pos_num
pos_num.below|pos_num → Type
pos_num.le|pos_num → pos_num → bool
pos_num.cases_on|Π (n : pos_num), ?C pos_num.one → (Π (a : pos_num), ?C (pos_num.bit1 a)) → (Π (a : pos_num), ?C (pos_num.bit0 a)) → ?C n
pos_num.pred|pos_num → pos_num
pos_num.mul|pos_num → pos_num → pos_num
pos_num.no_confusion_type|Type → pos_num → pos_num → Type
pos_num.no_confusion|eq ?v1 ?v2 → pos_num.no_confusion_type ?P ?v1 ?v2
pos_num.lt|pos_num → pos_num → bool
pos_num.rec_on|Π (n : pos_num), ?C pos_num.one → (Π (a : pos_num), ?C a → ?C (pos_num.bit1 a)) → (Π (a : pos_num), ?C a → ?C (pos_num.bit0 a)) → ?C n
pos_num.brec_on|Π (n : pos_num), (Π (n : pos_num), pos_num.below n → ?C n) → ?C n
pos_num.add|pos_num → pos_num → pos_num
pos_num|Type
-- ENDFINDP
-- BEGINFINDP
pos_num.size|pos_num → pos_num
pos_num.bit0|pos_num → pos_num
pos_num.is_inhabited|inhabited pos_num
pos_num.is_one|pos_num → bool
pos_num.inc|pos_num → pos_num
pos_num.ibelow|pos_num → Prop
pos_num.binduction_on|Π (n : pos_num), (Π (n : pos_num), pos_num.ibelow n → ?C n) → ?C n
pos_num.induction_on|Π (n : pos_num), ?C pos_num.one → (Π (a : pos_num), ?C a → ?C (pos_num.bit1 a)) → (Π (a : pos_num), ?C a → ?C (pos_num.bit0 a)) → ?C n
pos_num.succ|pos_num → pos_num
pos_num.bit1|pos_num → pos_num
pos_num.rec|?C pos_num.one → (Π (a : pos_num), ?C a → ?C (pos_num.bit1 a)) → (Π (a : pos_num), ?C a → ?C (pos_num.bit0 a)) → (Π (n : pos_num), ?C n)
pos_num.one|pos_num
pos_num.below|pos_num → Type
pos_num.le|pos_num → pos_num → bool
pos_num.cases_on|Π (n : pos_num), ?C pos_num.one → (Π (a : pos_num), ?C (pos_num.bit1 a)) → (Π (a : pos_num), ?C (pos_num.bit0 a)) → ?C n
pos_num.pred|pos_num → pos_num
pos_num.mul|pos_num → pos_num → pos_num
pos_num.no_confusion_type|Type → pos_num → pos_num → Type
pos_num.no_confusion|eq ?v1 ?v2 → pos_num.no_confusion_type ?P ?v1 ?v2
pos_num.lt|pos_num → pos_num → bool
pos_num.rec_on|Π (n : pos_num), ?C pos_num.one → (Π (a : pos_num), ?C a → ?C (pos_num.bit1 a)) → (Π (a : pos_num), ?C a → ?C (pos_num.bit0 a)) → ?C n
pos_num.brec_on|Π (n : pos_num), (Π (n : pos_num), pos_num.below n → ?C n) → ?C n
pos_num.add|pos_num → pos_num → pos_num
pos_num|Type
-- ENDFINDP