22 lines
491 B
Text
22 lines
491 B
Text
import logic
|
|
open eq.ops
|
|
namespace experiment
|
|
inductive nat : Type :=
|
|
| zero : nat
|
|
| succ : nat → nat
|
|
|
|
namespace nat
|
|
definition add (x y : nat) : nat := nat.rec x (λn r, succ r) y
|
|
infixl `+` := add
|
|
definition mul (n m : nat) := nat.rec zero (fun m x, x + n) m
|
|
infixl `*` := mul
|
|
|
|
axiom mul_zero_right (n : nat) : n * zero = zero
|
|
|
|
constant P : nat → Prop
|
|
|
|
print "==========================="
|
|
theorem tst (n : nat) (H : P (n * zero)) : P zero
|
|
:= eq.subst (mul_zero_right _) H
|
|
end nat
|
|
exit
|