7e9f574ef3
This changes improves the 'constructor' tactic
171 lines
7.2 KiB
Text
171 lines
7.2 KiB
Text
/-
|
||
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
|
||
Author: Leonardo de Moura
|
||
|
||
Define propositional calculus, valuation, provability, validity, prove soundness.
|
||
|
||
This file is based on Floris van Doorn Coq files.
|
||
|
||
Similar to soundness.lean, but defines Nc in Type.
|
||
The idea is to be able to prove soundness using recursive equations.
|
||
-/
|
||
import data.nat data.list
|
||
open nat bool list decidable
|
||
|
||
definition PropVar [reducible] := nat
|
||
|
||
inductive PropF :=
|
||
| Var : PropVar → PropF
|
||
| Bot : PropF
|
||
| Conj : PropF → PropF → PropF
|
||
| Disj : PropF → PropF → PropF
|
||
| Impl : PropF → PropF → PropF
|
||
|
||
namespace PropF
|
||
notation `#`:max P:max := Var P
|
||
notation A ∨ B := Disj A B
|
||
notation A ∧ B := Conj A B
|
||
infixr `⇒`:27 := Impl
|
||
notation `⊥` := Bot
|
||
|
||
definition Neg A := A ⇒ ⊥
|
||
notation ~ A := Neg A
|
||
definition Top := ~⊥
|
||
notation `⊤` := Top
|
||
definition BiImpl A B := A ⇒ B ∧ B ⇒ A
|
||
infixr `⇔`:27 := BiImpl
|
||
|
||
definition valuation := PropVar → bool
|
||
|
||
definition TrueQ (v : valuation) : PropF → bool
|
||
| TrueQ (# P) := v P
|
||
| TrueQ ⊥ := ff
|
||
| TrueQ (A ∨ B) := TrueQ A || TrueQ B
|
||
| TrueQ (A ∧ B) := TrueQ A && TrueQ B
|
||
| TrueQ (A ⇒ B) := bnot (TrueQ A) || TrueQ B
|
||
|
||
definition is_true [reducible] (b : bool) := b = tt
|
||
|
||
-- the valuation v satisfies a list of PropF, if forall (A : PropF) in Γ,
|
||
-- (TrueQ v A) is tt (the Boolean true)
|
||
definition Satisfies v Γ := ∀ A, A ∈ Γ → is_true (TrueQ v A)
|
||
definition Models Γ A := ∀ v, Satisfies v Γ → is_true (TrueQ v A)
|
||
|
||
infix `⊨`:80 := Models
|
||
|
||
definition Valid p := [] ⊨ p
|
||
reserve infix `⊢`:26
|
||
|
||
/- Provability -/
|
||
|
||
inductive Nc : list PropF → PropF → Type :=
|
||
infix ⊢ := Nc
|
||
| Nax : ∀ Γ A, A ∈ Γ → Γ ⊢ A
|
||
| ImpI : ∀ Γ A B, A::Γ ⊢ B → Γ ⊢ A ⇒ B
|
||
| ImpE : ∀ Γ A B, Γ ⊢ A ⇒ B → Γ ⊢ A → Γ ⊢ B
|
||
| BotC : ∀ Γ A, (~A)::Γ ⊢ ⊥ → Γ ⊢ A
|
||
| AndI : ∀ Γ A B, Γ ⊢ A → Γ ⊢ B → Γ ⊢ A ∧ B
|
||
| AndE₁ : ∀ Γ A B, Γ ⊢ A ∧ B → Γ ⊢ A
|
||
| AndE₂ : ∀ Γ A B, Γ ⊢ A ∧ B → Γ ⊢ B
|
||
| OrI₁ : ∀ Γ A B, Γ ⊢ A → Γ ⊢ A ∨ B
|
||
| OrI₂ : ∀ Γ A B, Γ ⊢ B → Γ ⊢ A ∨ B
|
||
| OrE : ∀ Γ A B C, Γ ⊢ A ∨ B → A::Γ ⊢ C → B::Γ ⊢ C → Γ ⊢ C
|
||
|
||
infix ⊢ := Nc
|
||
|
||
definition Provable A := [] ⊢ A
|
||
|
||
definition Prop_Soundness := ∀ A, Provable A → Valid A
|
||
|
||
definition Prop_Completeness := ∀ A, Valid A → Provable A
|
||
|
||
open Nc
|
||
|
||
-- Remark ⌞t⌟ indicates we should not pattern match on t.
|
||
-- In the following lemma, we only need to pattern match on Γ ⊢ A,
|
||
-- by pattern matching on A, we would be creating 10*6 cases instead of 10.
|
||
|
||
lemma weakening2 : ∀ {Γ A Δ}, Γ ⊢ A → Γ ⊆ Δ → Δ ⊢ A
|
||
| Γ ⌞A⌟ Δ (Nax Γ A Hin) Hs := by constructor; exact Hs Hin
|
||
| Γ ⌞A ⇒ B⌟ Δ (ImpI Γ A B H) Hs := by constructor; exact weakening2 H (cons_sub_cons A Hs)
|
||
| Γ ⌞B⌟ Δ (ImpE Γ A B H₁ H₂) Hs := by constructor; exact weakening2 H₁ Hs; exact weakening2 H₂ Hs
|
||
| Γ ⌞A⌟ Δ (BotC Γ A H) Hs := by constructor; exact weakening2 H (cons_sub_cons (~A) Hs)
|
||
| Γ ⌞A ∧ B⌟ Δ (AndI Γ A B H₁ H₂) Hs := by constructor; exact weakening2 H₁ Hs; exact weakening2 H₂ Hs
|
||
| Γ ⌞A⌟ Δ (AndE₁ Γ A B H) Hs := by constructor; exact weakening2 H Hs
|
||
| Γ ⌞B⌟ Δ (AndE₂ Γ A B H) Hs := by constructor; exact weakening2 H Hs
|
||
| Γ ⌞A ∨ B⌟ Δ (OrI₁ Γ A B H) Hs := by constructor; exact weakening2 H Hs
|
||
| Γ ⌞A ∨ B⌟ Δ (OrI₂ Γ A B H) Hs := by constructor; exact weakening2 H Hs
|
||
| Γ ⌞C⌟ Δ (OrE Γ A B C H₁ H₂ H₃) Hs :=
|
||
by constructor; exact weakening2 H₁ Hs; exact weakening2 H₂ (cons_sub_cons A Hs); exact weakening2 H₃ (cons_sub_cons B Hs)
|
||
|
||
lemma weakening : ∀ Γ Δ A, Γ ⊢ A → Γ++Δ ⊢ A :=
|
||
λ Γ Δ A H, weakening2 H (sub_append_left Γ Δ)
|
||
|
||
lemma deduction : ∀ Γ A B, Γ ⊢ A ⇒ B → A::Γ ⊢ B :=
|
||
λ Γ A B H, by constructor; exact weakening2 H (sub_cons A Γ); constructor; exact mem_cons A Γ
|
||
|
||
lemma prov_impl : ∀ A B, Provable (A ⇒ B) → ∀ Γ, Γ ⊢ A → Γ ⊢ B :=
|
||
λ A B Hp Γ Ha,
|
||
assert wHp : Γ ⊢ (A ⇒ B), from !weakening Hp,
|
||
by constructor; eassumption; eassumption
|
||
|
||
lemma Satisfies_cons : ∀ {A Γ v}, Satisfies v Γ → is_true (TrueQ v A) → Satisfies v (A::Γ) :=
|
||
λ A Γ v s t B BinAG,
|
||
or.elim BinAG
|
||
(λ e : B = A, by rewrite e; exact t)
|
||
(λ i : B ∈ Γ, s _ i)
|
||
|
||
theorem Soundness_general {v : valuation} : ∀ {A Γ}, Γ ⊢ A → Satisfies v Γ → is_true (TrueQ v A)
|
||
| ⌞A⌟ Γ (Nax Γ A Hin) s := s _ Hin
|
||
| ⌞A ⇒ B⌟ Γ (ImpI Γ A B H) s :=
|
||
by_cases
|
||
(λ t : is_true (TrueQ v A),
|
||
have aux₁ : Satisfies v (A::Γ), from Satisfies_cons s t,
|
||
have aux₂ : is_true (TrueQ v B), from Soundness_general H aux₁,
|
||
bor_inr aux₂)
|
||
(λ f : ¬ is_true (TrueQ v A),
|
||
have aux : bnot (TrueQ v A) = tt, by rewrite (eq_ff_of_ne_tt f),
|
||
bor_inl aux)
|
||
| ⌞B⌟ Γ (ImpE Γ A B H₁ H₂) s :=
|
||
assert aux₁ : bnot (TrueQ v A) || TrueQ v B = tt, from Soundness_general H₁ s,
|
||
assert aux₂ : TrueQ v A = tt, from Soundness_general H₂ s,
|
||
by rewrite [aux₂ at aux₁, bnot_true at aux₁, ff_bor at aux₁]; exact aux₁
|
||
| ⌞A⌟ Γ (BotC Γ A H) s := by_contradiction
|
||
(λ n : TrueQ v A ≠ tt,
|
||
assert aux₁ : TrueQ v A = ff, from eq_ff_of_ne_tt n,
|
||
assert aux₂ : TrueQ v (~A) = tt, begin change (bnot (TrueQ v A) || ff = tt), rewrite aux₁ end,
|
||
have aux₃ : Satisfies v ((~A)::Γ), from Satisfies_cons s aux₂,
|
||
have aux₄ : TrueQ v ⊥ = tt, from Soundness_general H aux₃,
|
||
absurd aux₄ ff_ne_tt)
|
||
| ⌞A ∧ B⌟ Γ (AndI Γ A B H₁ H₂) s :=
|
||
have aux₁ : TrueQ v A = tt, from Soundness_general H₁ s,
|
||
have aux₂ : TrueQ v B = tt, from Soundness_general H₂ s,
|
||
band_intro aux₁ aux₂
|
||
| ⌞A⌟ Γ (AndE₁ Γ A B H) s :=
|
||
have aux : TrueQ v (A ∧ B) = tt, from Soundness_general H s,
|
||
band_elim_left aux
|
||
| ⌞B⌟ Γ (AndE₂ Γ A B H) s :=
|
||
have aux : TrueQ v (A ∧ B) = tt, from Soundness_general H s,
|
||
band_elim_right aux
|
||
| ⌞A ∨ B⌟ Γ (OrI₁ Γ A B H) s :=
|
||
have aux : TrueQ v A = tt, from Soundness_general H s,
|
||
bor_inl aux
|
||
| ⌞A ∨ B⌟ Γ (OrI₂ Γ A B H) s :=
|
||
have aux : TrueQ v B = tt, from Soundness_general H s,
|
||
bor_inr aux
|
||
| ⌞C⌟ Γ (OrE Γ A B C H₁ H₂ H₃) s :=
|
||
have aux : TrueQ v A || TrueQ v B = tt, from Soundness_general H₁ s,
|
||
or.elim (or_of_bor_eq aux)
|
||
(λ At : TrueQ v A = tt,
|
||
have aux : Satisfies v (A::Γ), from Satisfies_cons s At,
|
||
Soundness_general H₂ aux)
|
||
(λ Bt : TrueQ v B = tt,
|
||
have aux : Satisfies v (B::Γ), from Satisfies_cons s Bt,
|
||
Soundness_general H₃ aux)
|
||
|
||
theorem Soundness : Prop_Soundness :=
|
||
λ A H v s, Soundness_general H s
|
||
|
||
end PropF
|