35 lines
No EOL
1.1 KiB
Text
35 lines
No EOL
1.1 KiB
Text
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||
-- Author: Jeremy Avigad
|
||
|
||
import data.unit data.bool data.nat
|
||
import data.prod data.sum data.sigma
|
||
|
||
using unit bool nat prod sum sigma
|
||
|
||
inductive fibrant (T : Type) : Type :=
|
||
fibrant_mk : fibrant T
|
||
|
||
namespace fibrant
|
||
|
||
axiom unit_fibrant : fibrant unit
|
||
axiom nat_fibrant : fibrant nat
|
||
axiom bool_fibrant : fibrant bool
|
||
axiom sum_fibrant {A B : Type} (C1 : fibrant A) (C2 : fibrant B) : fibrant (A ⊎ B)
|
||
axiom prod_fibrant {A B : Type} (C1 : fibrant A) (C2 : fibrant B) : fibrant (A × B)
|
||
axiom sigma_fibrant {A : Type} {B : A → Type} (C1 : fibrant A) (C2 : Πx : A, fibrant (B x)) :
|
||
fibrant (Σx : A, B x)
|
||
axiom pi_fibrant {A : Type} {B : A → Type} (C1 : fibrant A) (C2 : Πx : A, fibrant (B x)) :
|
||
fibrant (Πx : A, B x)
|
||
|
||
instance unit_fibrant
|
||
instance nat_fibrant
|
||
instance bool_fibrant
|
||
instance sum_fibrant
|
||
instance prod_fibrant
|
||
instance sigma_fibrant
|
||
instance pi_fibrant
|
||
|
||
theorem test_fibrant : fibrant (nat × (nat ⊎ nat)) := _
|
||
|
||
end fibrant |