lean2/library/standard/logic.lean
Leonardo de Moura 47ff300d1a fix(frontends/lean): '@' explicit mark
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
2014-06-28 07:30:36 -07:00

77 lines
2 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

definition Bool [inline] := Type.{0}
inductive false : Bool :=
-- No constructors
theorem false_elim (c : Bool) (H : false)
:= @false_rec c H
inductive true : Bool :=
| trivial : true
definition not (a : Bool) := a → false
precedence `¬`:40
notation `¬` a := not a
theorem not_intro {a : Bool} (H : a → false) : ¬ a
:= H
theorem not_elim {a : Bool} (H1 : ¬ a) (H2 : a) : false
:= H1 H2
theorem absurd {a : Bool} (H1 : a) (H2 : ¬ a) : false
:= H2 H1
theorem mt {a b : Bool} (H1 : a → b) (H2 : ¬ b) : ¬ a
:= λ Ha : a, absurd (H1 Ha) H2
theorem contrapos {a b : Bool} (H : a → b) : ¬ b → ¬ a
:= λ Hnb : ¬ b, mt H Hnb
theorem absurd_elim {a : Bool} (b : Bool) (H1 : a) (H2 : ¬ a) : b
:= false_elim b (absurd H1 H2)
inductive and (a b : Bool) : Bool :=
| and_intro : a → b → and a b
infixr `/\` 35 := and
infixr `∧` 35 := and
theorem and_elim_left {a b : Bool} (H : a ∧ b) : a
:= and_rec (λ a b, a) H
theorem and_elim_right {a b : Bool} (H : a ∧ b) : b
:= and_rec (λ a b, b) H
inductive or (a b : Bool) : Bool :=
| or_intro_left : a → or a b
| or_intro_right : b → or a b
infixr `\/` 30 := or
infixr `` 30 := or
theorem or_elim (a b c : Bool) (H1 : a b) (H2 : a → c) (H3 : b → c) : c
:= or_rec H2 H3 H1
inductive eq {A : Type} (a : A) : A → Bool :=
| eq_intro : eq A a a -- TODO: use elaborator in inductive_cmd module, we should not need to type A here
infix `=` 50 := eq
theorem refl {A : Type} (a : A) : a = a
:= @eq_intro A a
theorem subst {A : Type} {a b : A} {P : A → Bool} (H1 : a = b) (H2 : P a) : P b
:= eq_rec H2 H1
theorem trans {A : Type} {a b c : A} (H1 : a = b) (H2 : b = c) : a = c
:= subst H2 H1
theorem symm {A : Type} {a b : A} (H : a = b) : b = a
:= subst H (refl a)
-- theorem congr1 {A B : Type} {f g : A → B} (H : f = g) (a : A) : f a = g a
-- := subst H (refl (f a)) -- TODO: check unifier does not work in this case
theorem congr2 {A B : Type} {a b : A} (f : A → B) (H : a = b) : f a = f b
:= subst H (refl (f a))