lean2/hott/types/equiv.hlean

98 lines
4 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2014 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: types.equiv
Author: Floris van Doorn
Ported from Coq HoTT
Theorems about the types equiv and is_equiv
-/
import types.fiber types.arrow arity
open eq is_trunc sigma sigma.ops arrow pi
namespace is_equiv
open equiv function
section
open fiber
variables {A B : Type} (f : A → B) [H : is_equiv f]
include H
definition is_contr_fiber_of_is_equiv (b : B) : is_contr (fiber f b) :=
is_contr.mk
(fiber.mk (f⁻¹ b) (retr f b))
(λz, fiber.rec_on z (λa p, fiber_eq ((ap f⁻¹ p)⁻¹ ⬝ sect f a) (calc
retr f b = (ap (f ∘ f⁻¹) p)⁻¹ ⬝ ((ap (f ∘ f⁻¹) p) ⬝ retr f b) : by rewrite inv_con_cancel_left
... = (ap (f ∘ f⁻¹) p)⁻¹ ⬝ (retr f (f a) ⬝ p) : by rewrite ap_con_eq_con
... = (ap (f ∘ f⁻¹) p)⁻¹ ⬝ (ap f (sect f a) ⬝ p) : by rewrite adj
... = (ap (f ∘ f⁻¹) p)⁻¹ ⬝ ap f (sect f a) ⬝ p : by rewrite con.assoc
... = (ap f (ap f⁻¹ p))⁻¹ ⬝ ap f (sect f a) ⬝ p : by rewrite ap_compose
... = ap f (ap f⁻¹ p)⁻¹ ⬝ ap f (sect f a) ⬝ p : by rewrite ap_inv
... = ap f ((ap f⁻¹ p)⁻¹ ⬝ sect f a) ⬝ p : by rewrite ap_con)))
definition is_contr_right_inverse : is_contr (Σ(g : B → A), f ∘ g id) :=
begin
fapply is_trunc_equiv_closed,
{apply sigma_equiv_sigma_id, intro g, apply eq_equiv_homotopy},
fapply is_trunc_equiv_closed,
{apply fiber.sigma_char},
fapply is_contr_fiber_of_is_equiv,
apply (to_is_equiv (arrow_equiv_arrow_right (equiv.mk f H))),
end
definition is_contr_right_coherence (u : Σ(g : B → A), f ∘ g id)
: is_contr (Σ(η : u.1 ∘ f id), Π(a : A), u.2 (f a) = ap f (η a)) :=
begin
fapply is_trunc_equiv_closed,
{apply equiv.symm, apply sigma_pi_equiv_pi_sigma},
fapply is_trunc_equiv_closed,
{apply pi_equiv_pi_id, intro a,
apply (equiv_fiber_eq (fiber.mk (u.1 (f a)) (u.2 (f a))) (fiber.mk a idp))},
fapply is_trunc_pi,
intro a, fapply @is_contr_eq,
apply is_contr_fiber_of_is_equiv
end
end
variables {A B : Type} (f : A → B)
protected definition sigma_char : (is_equiv f) ≃
(Σ(g : B → A) (ε : f ∘ g id) (η : g ∘ f id), Π(a : A), ε (f a) = ap f (η a)) :=
equiv.MK (λH, ⟨inv f, retr f, sect f, adj f⟩)
(λp, is_equiv.mk f p.1 p.2.1 p.2.2.1 p.2.2.2)
(λp, begin
cases p with [p1, p2],
cases p2 with [p21, p22],
cases p22 with [p221, p222],
apply idp
end)
(λH, is_equiv.rec_on H (λH1 H2 H3 H4, idp))
protected definition sigma_char' : (is_equiv f) ≃
(Σ(u : Σ(g : B → A), f ∘ g id), Σ(η : u.1 ∘ f id), Π(a : A), u.2 (f a) = ap f (η a)) :=
calc
(is_equiv f) ≃
(Σ(g : B → A) (ε : f ∘ g id) (η : g ∘ f id), Π(a : A), ε (f a) = ap f (η a))
: is_equiv.sigma_char
... ≃ (Σ(u : Σ(g : B → A), f ∘ g id), Σ(η : u.1 ∘ f id), Π(a : A), u.2 (f a) = ap f (η a))
: {sigma_assoc_equiv (λu, Σ(η : u.1 ∘ f id), Π(a : A), u.2 (f a) = ap f (η a))}
local attribute is_contr_right_inverse [instance]
local attribute is_contr_right_coherence [instance]
theorem is_hprop_is_equiv [instance] : is_hprop (is_equiv f) :=
is_hprop_of_imp_is_contr (λ(H : is_equiv f), is_trunc_equiv_closed -2 (equiv.symm !sigma_char'))
end is_equiv
namespace equiv
open is_equiv
variables {A B : Type}
protected definition eq_mk' {f f' : A → B} [H : is_equiv f] [H' : is_equiv f'] (p : f = f')
: equiv.mk f H = equiv.mk f' H' :=
apd011 equiv.mk p !is_hprop.elim
protected definition eq_mk {f f' : A ≃ B} (p : to_fun f = to_fun f') : f = f' :=
by (cases f; cases f'; apply (equiv.eq_mk' p))
end equiv