lean2/tests/lean/slow/list_elab2.lean
2014-10-02 17:55:34 -07:00

191 lines
6.4 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

----------------------------------------------------------------------------------------------------
--- Copyright (c) 2014 Parikshit Khanna. All rights reserved.
--- Released under Apache 2.0 license as described in the file LICENSE.
--- Authors: Parikshit Khanna, Jeremy Avigad
----------------------------------------------------------------------------------------------------
-- Theory list
-- ===========
--
-- Basic properties of lists.
import logic data.nat
-- import congr
open nat
-- open congr
open eq.ops eq
inductive list (T : Type) : Type :=
nil {} : list T,
cons : T → list T → list T
definition refl := @eq.refl
namespace list
-- Type
-- ----
infix `::` : 65 := cons
section
parameter {T : Type}
theorem list_induction_on {P : list T → Prop} (l : list T) (Hnil : P nil)
(Hind : forall x : T, forall l : list T, forall H : P l, P (cons x l)) : P l :=
list.rec Hnil Hind l
theorem list_cases_on {P : list T → Prop} (l : list T) (Hnil : P nil)
(Hcons : forall x : T, forall l : list T, P (cons x l)) : P l :=
list_induction_on l Hnil (take x l IH, Hcons x l)
notation `[` l:(foldr `,` (h t, cons h t) nil) `]` := l
-- Concat
-- ------
definition concat (s t : list T) : list T :=
list.rec t (fun x : T, fun l : list T, fun u : list T, cons x u) s
infixl `++` : 65 := concat
theorem nil_concat (t : list T) : nil ++ t = t := refl _
theorem cons_concat (x : T) (s t : list T) : (x :: s) ++ t = x :: (s ++ t) := refl _
theorem concat_nil (t : list T) : t ++ nil = t :=
list_induction_on t (refl _)
(take (x : T) (l : list T) (H : concat l nil = l),
H ▸ (refl (cons x (concat l nil))))
theorem concat_nil2 (t : list T) : t ++ nil = t :=
list_induction_on t (refl _)
(take (x : T) (l : list T) (H : concat l nil = l),
-- H ▸ (refl (cons x (concat l nil))))
H ▸ (refl (concat (cons x l) nil)))
theorem concat_assoc (s t u : list T) : s ++ t ++ u = s ++ (t ++ u) :=
list_induction_on s (refl _)
(take x l,
assume H : concat (concat l t) u = concat l (concat t u),
H ▸ refl _)
theorem concat_assoc2 (s t u : list T) : s ++ t ++ u = s ++ (t ++ u) :=
list_induction_on s (refl _)
(take x l,
assume H : concat (concat l t) u = concat l (concat t u),
calc concat (concat (cons x l) t) u = cons x (concat (concat l t) u) : refl _
... = concat (cons x l) (concat t u) : { H })
theorem concat_assoc3 (s t u : list T) : s ++ t ++ u = s ++ (t ++ u) :=
list_induction_on s (refl _)
(take x l,
assume H : concat (concat l t) u = concat l (concat t u),
calc concat (concat (cons x l) t) u = cons x (concat l (concat t u)) : { H }
... = concat (cons x l) (concat t u) : refl _)
theorem concat_assoc4 (s t u : list T) : s ++ t ++ u = s ++ (t ++ u) :=
list_induction_on s (refl _)
(take x l,
assume H : concat (concat l t) u = concat l (concat t u),
calc
concat (concat (cons x l) t) u = cons x (concat (concat l t) u) : refl _
... = cons x (concat l (concat t u)) : { H }
... = concat (cons x l) (concat t u) : refl _)
-- Length
-- ------
definition length : list T → := list.rec 0 (fun x l m, succ m)
-- TODO: cannot replace zero by 0
theorem length_nil : length (@nil T) = zero := refl _
theorem length_cons (x : T) (t : list T) : length (x :: t) = succ (length t) := refl _
theorem length_concat (s t : list T) : length (s ++ t) = length s + length t :=
list_induction_on s
(calc
length (concat nil t) = length t : refl _
... = 0 + length t : {symm !add.zero_left}
... = length (@nil T) + length t : refl _)
(take x s,
assume H : length (concat s t) = length s + length t,
calc
length (concat (cons x s) t ) = succ (length (concat s t)) : refl _
... = succ (length s + length t) : { H }
... = succ (length s) + length t : {symm !add.succ_left}
... = length (cons x s) + length t : refl _)
-- Reverse
-- -------
definition reverse : list T → list T := list.rec nil (fun x l r, r ++ [x])
theorem reverse_nil : reverse (@nil T) = nil := refl _
theorem reverse_cons (x : T) (l : list T) : reverse (x :: l) = (reverse l) ++ (cons x nil) := refl _
-- opaque_hint (hiding reverse)
theorem reverse_concat (s t : list T) : reverse (s ++ t) = (reverse t) ++ (reverse s) :=
list_induction_on s
(calc
reverse (concat nil t) = reverse t : { nil_concat _ }
... = concat (reverse t) nil : symm (concat_nil _)
... = concat (reverse t) (reverse nil) : {symm (reverse_nil)})
(take x l,
assume H : reverse (concat l t) = concat (reverse t) (reverse l),
calc
reverse (concat (cons x l) t) = concat (reverse (concat l t)) (cons x nil) : refl _
... = concat (concat (reverse t) (reverse l)) (cons x nil) : { H }
... = concat (reverse t) (concat (reverse l) (cons x nil)) : concat_assoc _ _ _
... = concat (reverse t) (reverse (cons x l)) : refl _)
-- -- add_rewrite length_nil length_cons
theorem reverse_reverse (l : list T) : reverse (reverse l) = l :=
list_induction_on l (refl _)
(take x l',
assume H: reverse (reverse l') = l',
show reverse (reverse (cons x l')) = cons x l', from
calc
reverse (reverse (cons x l')) =
concat (reverse (cons x nil)) (reverse (reverse l')) : {reverse_concat _ _}
... = cons x l' : {H})
-- Append
-- ------
-- TODO: define reverse from append
definition append (x : T) : list T → list T := list.rec (x :: nil) (fun y l l', y :: l')
theorem append_nil (x : T) : append x nil = [x] := refl _
theorem append_cons (x : T) (y : T) (l : list T) : append x (y :: l) = y :: (append x l) := refl _
theorem append_eq_concat (x : T) (l : list T) : append x l = l ++ [x] :=
list_induction_on l (refl _)
(take y l,
assume P : append x l = concat l [x],
P ▸ refl _)
theorem append_eq_reverse_cons (x : T) (l : list T) : append x l = reverse (x :: reverse l) :=
list_induction_on l
(calc
append x nil = [x] : (refl _)
... = concat nil [x] : {symm (nil_concat _)}
... = concat (reverse nil) [x] : {symm (reverse_nil)}
... = reverse [x] : {symm (reverse_cons _ _)}
... = reverse (x :: (reverse nil)) : {symm (reverse_nil)})
(take y l',
assume H : append x l' = reverse (x :: reverse l'),
calc
append x (y :: l') = (y :: l') ++ [ x ] : append_eq_concat _ _
... = concat (reverse (reverse (y :: l'))) [ x ] : {symm (reverse_reverse _)}
... = reverse (x :: (reverse (y :: l'))) : refl _)
end
end list