066b0fcdf9
Breaking changes: pnat was redefined to use subtype instead of a custom inductive type, which affects the notation for pnat 2 and 3
392 lines
15 KiB
Text
392 lines
15 KiB
Text
/-
|
||
Copyright (c) 2014 Floris van Doorn. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Floris van Doorn, Jeremy Avigad
|
||
|
||
The order relation on the integers. We show that int is an instance of linear_comm_ordered_ring
|
||
and transfer the results.
|
||
-/
|
||
import .basic algebra.ordered_ring
|
||
open nat
|
||
open decidable
|
||
open int eq.ops
|
||
|
||
namespace int
|
||
|
||
private definition nonneg (a : ℤ) : Prop := int.cases_on a (take n, true) (take n, false)
|
||
definition le (a b : ℤ) : Prop := nonneg (b - a)
|
||
definition lt (a b : ℤ) : Prop := le (a + 1) b
|
||
|
||
infix [priority int.prio] - := int.sub
|
||
infix [priority int.prio] <= := int.le
|
||
infix [priority int.prio] ≤ := int.le
|
||
infix [priority int.prio] < := int.lt
|
||
|
||
local attribute nonneg [reducible]
|
||
private definition decidable_nonneg [instance] (a : ℤ) : decidable (nonneg a) := int.cases_on a _ _
|
||
definition decidable_le [instance] (a b : ℤ) : decidable (a ≤ b) := decidable_nonneg _
|
||
definition decidable_lt [instance] (a b : ℤ) : decidable (a < b) := decidable_nonneg _
|
||
|
||
private theorem nonneg.elim {a : ℤ} : nonneg a → ∃n : ℕ, a = n :=
|
||
int.cases_on a (take n H, exists.intro n rfl) (take n', false.elim)
|
||
|
||
private theorem nonneg_or_nonneg_neg (a : ℤ) : nonneg a ∨ nonneg (-a) :=
|
||
int.cases_on a (take n, or.inl trivial) (take n, or.inr trivial)
|
||
|
||
theorem le.intro {a b : ℤ} {n : ℕ} (H : a + n = b) : a ≤ b :=
|
||
have n = b - a, from eq_add_neg_of_add_eq (!add.comm ▸ H),
|
||
show nonneg (b - a), from this ▸ trivial
|
||
|
||
theorem le.elim {a b : ℤ} (H : a ≤ b) : ∃n : ℕ, a + n = b :=
|
||
obtain (n : ℕ) (H1 : b - a = n), from nonneg.elim H,
|
||
exists.intro n (!add.comm ▸ iff.mpr !add_eq_iff_eq_add_neg (H1⁻¹))
|
||
|
||
theorem le.total (a b : ℤ) : a ≤ b ∨ b ≤ a :=
|
||
or.imp_right
|
||
(assume H : nonneg (-(b - a)),
|
||
have -(b - a) = a - b, from !neg_sub,
|
||
show nonneg (a - b), from this ▸ H) -- too bad: can't do it in one step
|
||
(nonneg_or_nonneg_neg (b - a))
|
||
|
||
theorem of_nat_le_of_nat_of_le {m n : ℕ} (H : #nat m ≤ n) : of_nat m ≤ of_nat n :=
|
||
obtain (k : ℕ) (Hk : m + k = n), from nat.le.elim H,
|
||
le.intro (Hk ▸ (of_nat_add m k)⁻¹)
|
||
|
||
theorem le_of_of_nat_le_of_nat {m n : ℕ} (H : of_nat m ≤ of_nat n) : (#nat m ≤ n) :=
|
||
obtain (k : ℕ) (Hk : of_nat m + of_nat k = of_nat n), from le.elim H,
|
||
have m + k = n, from of_nat.inj (of_nat_add m k ⬝ Hk),
|
||
nat.le.intro this
|
||
|
||
theorem of_nat_le_of_nat (m n : ℕ) : of_nat m ≤ of_nat n ↔ m ≤ n :=
|
||
iff.intro le_of_of_nat_le_of_nat of_nat_le_of_nat_of_le
|
||
|
||
theorem lt_add_succ (a : ℤ) (n : ℕ) : a < a + succ n :=
|
||
le.intro (show a + 1 + n = a + succ n, from
|
||
calc
|
||
a + 1 + n = a + (1 + n) : add.assoc
|
||
... = a + (n + 1) : nat.add.comm
|
||
... = a + succ n : rfl)
|
||
|
||
theorem lt.intro {a b : ℤ} {n : ℕ} (H : a + succ n = b) : a < b :=
|
||
H ▸ lt_add_succ a n
|
||
|
||
theorem lt.elim {a b : ℤ} (H : a < b) : ∃n : ℕ, a + succ n = b :=
|
||
obtain (n : ℕ) (Hn : a + 1 + n = b), from le.elim H,
|
||
have a + succ n = b, from
|
||
calc
|
||
a + succ n = a + 1 + n : by rewrite [add.assoc, add.comm 1 n]
|
||
... = b : Hn,
|
||
exists.intro n this
|
||
|
||
theorem of_nat_lt_of_nat (n m : ℕ) : of_nat n < of_nat m ↔ n < m :=
|
||
calc
|
||
of_nat n < of_nat m ↔ of_nat n + 1 ≤ of_nat m : iff.refl
|
||
... ↔ of_nat (nat.succ n) ≤ of_nat m : of_nat_succ n ▸ !iff.refl
|
||
... ↔ nat.succ n ≤ m : of_nat_le_of_nat
|
||
... ↔ n < m : iff.symm (lt_iff_succ_le _ _)
|
||
|
||
theorem lt_of_of_nat_lt_of_nat {m n : ℕ} (H : of_nat m < of_nat n) : #nat m < n :=
|
||
iff.mp !of_nat_lt_of_nat H
|
||
|
||
theorem of_nat_lt_of_nat_of_lt {m n : ℕ} (H : #nat m < n) : of_nat m < of_nat n :=
|
||
iff.mpr !of_nat_lt_of_nat H
|
||
|
||
/- show that the integers form an ordered additive group -/
|
||
|
||
theorem le.refl (a : ℤ) : a ≤ a :=
|
||
le.intro (add_zero a)
|
||
|
||
theorem le.trans {a b c : ℤ} (H1 : a ≤ b) (H2 : b ≤ c) : a ≤ c :=
|
||
obtain (n : ℕ) (Hn : a + n = b), from le.elim H1,
|
||
obtain (m : ℕ) (Hm : b + m = c), from le.elim H2,
|
||
have a + of_nat (n + m) = c, from
|
||
calc
|
||
a + of_nat (n + m) = a + (of_nat n + m) : {of_nat_add n m}
|
||
... = a + n + m : (add.assoc a n m)⁻¹
|
||
... = b + m : {Hn}
|
||
... = c : Hm,
|
||
le.intro this
|
||
|
||
theorem le.antisymm : ∀ {a b : ℤ}, a ≤ b → b ≤ a → a = b :=
|
||
take a b : ℤ, assume (H₁ : a ≤ b) (H₂ : b ≤ a),
|
||
obtain (n : ℕ) (Hn : a + n = b), from le.elim H₁,
|
||
obtain (m : ℕ) (Hm : b + m = a), from le.elim H₂,
|
||
have a + of_nat (n + m) = a + 0, from
|
||
calc
|
||
a + of_nat (n + m) = a + (of_nat n + m) : of_nat_add
|
||
... = a + n + m : add.assoc
|
||
... = b + m : Hn
|
||
... = a : Hm
|
||
... = a + 0 : add_zero,
|
||
have of_nat (n + m) = of_nat 0, from add.left_cancel this,
|
||
have n + m = 0, from of_nat.inj this,
|
||
have n = 0, from nat.eq_zero_of_add_eq_zero_right this,
|
||
show a = b, from
|
||
calc
|
||
a = a + 0 : add_zero
|
||
... = a + n : this
|
||
... = b : Hn
|
||
|
||
theorem lt.irrefl (a : ℤ) : ¬ a < a :=
|
||
(suppose a < a,
|
||
obtain (n : ℕ) (Hn : a + succ n = a), from lt.elim this,
|
||
have a + succ n = a + 0, from
|
||
Hn ⬝ !add_zero⁻¹,
|
||
!succ_ne_zero (of_nat.inj (add.left_cancel this)))
|
||
|
||
theorem ne_of_lt {a b : ℤ} (H : a < b) : a ≠ b :=
|
||
(suppose a = b, absurd (this ▸ H) (lt.irrefl b))
|
||
|
||
theorem le_of_lt {a b : ℤ} (H : a < b) : a ≤ b :=
|
||
obtain (n : ℕ) (Hn : a + succ n = b), from lt.elim H,
|
||
le.intro Hn
|
||
|
||
theorem lt_iff_le_and_ne (a b : ℤ) : a < b ↔ (a ≤ b ∧ a ≠ b) :=
|
||
iff.intro
|
||
(assume H, and.intro (le_of_lt H) (ne_of_lt H))
|
||
(assume H,
|
||
have a ≤ b, from and.elim_left H,
|
||
have a ≠ b, from and.elim_right H,
|
||
obtain (n : ℕ) (Hn : a + n = b), from le.elim `a ≤ b`,
|
||
have n ≠ 0, from (assume H' : n = 0, `a ≠ b` (!add_zero ▸ H' ▸ Hn)),
|
||
obtain (k : ℕ) (Hk : n = nat.succ k), from nat.exists_eq_succ_of_ne_zero this,
|
||
lt.intro (Hk ▸ Hn))
|
||
|
||
theorem le_iff_lt_or_eq (a b : ℤ) : a ≤ b ↔ (a < b ∨ a = b) :=
|
||
iff.intro
|
||
(assume H,
|
||
by_cases
|
||
(suppose a = b, or.inr this)
|
||
(suppose a ≠ b,
|
||
obtain (n : ℕ) (Hn : a + n = b), from le.elim H,
|
||
have n ≠ 0, from (assume H' : n = 0, `a ≠ b` (!add_zero ▸ H' ▸ Hn)),
|
||
obtain (k : ℕ) (Hk : n = nat.succ k), from nat.exists_eq_succ_of_ne_zero this,
|
||
or.inl (lt.intro (Hk ▸ Hn))))
|
||
(assume H,
|
||
or.elim H
|
||
(assume H1, le_of_lt H1)
|
||
(assume H1, H1 ▸ !le.refl))
|
||
|
||
theorem lt_succ (a : ℤ) : a < a + 1 :=
|
||
le.refl (a + 1)
|
||
|
||
theorem add_le_add_left {a b : ℤ} (H : a ≤ b) (c : ℤ) : c + a ≤ c + b :=
|
||
obtain (n : ℕ) (Hn : a + n = b), from le.elim H,
|
||
have H2 : c + a + n = c + b, from
|
||
calc
|
||
c + a + n = c + (a + n) : add.assoc c a n
|
||
... = c + b : {Hn},
|
||
le.intro H2
|
||
|
||
theorem add_lt_add_left {a b : ℤ} (H : a < b) (c : ℤ) : c + a < c + b :=
|
||
let H' := le_of_lt H in
|
||
(iff.mpr (lt_iff_le_and_ne _ _)) (and.intro (add_le_add_left H' _)
|
||
(take Heq, let Heq' := add_left_cancel Heq in
|
||
!lt.irrefl (Heq' ▸ H)))
|
||
|
||
theorem mul_nonneg {a b : ℤ} (Ha : 0 ≤ a) (Hb : 0 ≤ b) : 0 ≤ a * b :=
|
||
obtain (n : ℕ) (Hn : 0 + n = a), from le.elim Ha,
|
||
obtain (m : ℕ) (Hm : 0 + m = b), from le.elim Hb,
|
||
le.intro
|
||
(eq.symm
|
||
(calc
|
||
a * b = (0 + n) * b : Hn
|
||
... = n * b : nat.zero_add
|
||
... = n * (0 + m) : {Hm⁻¹}
|
||
... = n * m : nat.zero_add
|
||
... = 0 + n * m : zero_add))
|
||
|
||
theorem mul_pos {a b : ℤ} (Ha : 0 < a) (Hb : 0 < b) : 0 < a * b :=
|
||
obtain (n : ℕ) (Hn : 0 + nat.succ n = a), from lt.elim Ha,
|
||
obtain (m : ℕ) (Hm : 0 + nat.succ m = b), from lt.elim Hb,
|
||
lt.intro
|
||
(eq.symm
|
||
(calc
|
||
a * b = (0 + nat.succ n) * b : Hn
|
||
... = nat.succ n * b : nat.zero_add
|
||
... = nat.succ n * (0 + nat.succ m) : {Hm⁻¹}
|
||
... = nat.succ n * nat.succ m : nat.zero_add
|
||
... = of_nat (nat.succ n * nat.succ m) : of_nat_mul
|
||
... = of_nat (nat.succ n * m + nat.succ n) : nat.mul_succ
|
||
... = of_nat (nat.succ (nat.succ n * m + n)) : nat.add_succ
|
||
... = 0 + nat.succ (nat.succ n * m + n) : zero_add))
|
||
|
||
|
||
theorem zero_lt_one : (0 : ℤ) < 1 := trivial
|
||
|
||
theorem not_le_of_gt {a b : ℤ} (H : a < b) : ¬ b ≤ a :=
|
||
assume Hba,
|
||
let Heq := le.antisymm (le_of_lt H) Hba in
|
||
!lt.irrefl (Heq ▸ H)
|
||
|
||
theorem lt_of_lt_of_le {a b c : ℤ} (Hab : a < b) (Hbc : b ≤ c) : a < c :=
|
||
let Hab' := le_of_lt Hab in
|
||
let Hac := le.trans Hab' Hbc in
|
||
(iff.mpr !lt_iff_le_and_ne) (and.intro Hac
|
||
(assume Heq, not_le_of_gt (Heq ▸ Hab) Hbc))
|
||
|
||
theorem lt_of_le_of_lt {a b c : ℤ} (Hab : a ≤ b) (Hbc : b < c) : a < c :=
|
||
let Hbc' := le_of_lt Hbc in
|
||
let Hac := le.trans Hab Hbc' in
|
||
(iff.mpr !lt_iff_le_and_ne) (and.intro Hac
|
||
(assume Heq, not_le_of_gt (Heq⁻¹ ▸ Hbc) Hab))
|
||
|
||
section migrate_algebra
|
||
open [classes] algebra
|
||
|
||
protected definition linear_ordered_comm_ring [reducible] :
|
||
algebra.linear_ordered_comm_ring int :=
|
||
⦃algebra.linear_ordered_comm_ring, int.integral_domain,
|
||
le := le,
|
||
le_refl := le.refl,
|
||
le_trans := @le.trans,
|
||
le_antisymm := @le.antisymm,
|
||
lt := lt,
|
||
le_of_lt := @le_of_lt,
|
||
lt_irrefl := lt.irrefl,
|
||
lt_of_lt_of_le := @lt_of_lt_of_le,
|
||
lt_of_le_of_lt := @lt_of_le_of_lt,
|
||
add_le_add_left := @add_le_add_left,
|
||
mul_nonneg := @mul_nonneg,
|
||
mul_pos := @mul_pos,
|
||
le_iff_lt_or_eq := le_iff_lt_or_eq,
|
||
le_total := le.total,
|
||
zero_ne_one := zero_ne_one,
|
||
zero_lt_one := zero_lt_one,
|
||
add_lt_add_left := @add_lt_add_left⦄
|
||
|
||
protected definition decidable_linear_ordered_comm_ring [reducible] :
|
||
algebra.decidable_linear_ordered_comm_ring int :=
|
||
⦃algebra.decidable_linear_ordered_comm_ring,
|
||
int.linear_ordered_comm_ring,
|
||
decidable_lt := decidable_lt⦄
|
||
|
||
local attribute int.integral_domain [instance]
|
||
local attribute int.linear_ordered_comm_ring [instance]
|
||
local attribute int.decidable_linear_ordered_comm_ring [instance]
|
||
|
||
definition ge [reducible] (a b : ℤ) := algebra.has_le.ge a b
|
||
definition gt [reducible] (a b : ℤ) := algebra.has_lt.gt a b
|
||
infix >= := int.ge
|
||
infix ≥ := int.ge
|
||
infix > := int.gt
|
||
definition decidable_ge [instance] (a b : ℤ) : decidable (a ≥ b) :=
|
||
show decidable (b ≤ a), from _
|
||
definition decidable_gt [instance] (a b : ℤ) : decidable (a > b) :=
|
||
show decidable (b < a), from _
|
||
definition min : ℤ → ℤ → ℤ := algebra.min
|
||
definition max : ℤ → ℤ → ℤ := algebra.max
|
||
definition abs : ℤ → ℤ := algebra.abs
|
||
definition sign : ℤ → ℤ := algebra.sign
|
||
|
||
migrate from algebra with int
|
||
replacing has_le.ge → ge, has_lt.gt → gt, dvd → dvd, sub → sub, min → min, max → max,
|
||
abs → abs, sign → sign
|
||
|
||
attribute le.trans ge.trans lt.trans gt.trans [trans]
|
||
attribute lt_of_lt_of_le lt_of_le_of_lt gt_of_gt_of_ge gt_of_ge_of_gt [trans]
|
||
end migrate_algebra
|
||
|
||
/- more facts specific to int -/
|
||
|
||
theorem of_nat_nonneg (n : ℕ) : 0 ≤ of_nat n := trivial
|
||
|
||
theorem of_nat_pos {n : ℕ} (Hpos : #nat n > 0) : of_nat n > 0 :=
|
||
of_nat_lt_of_nat_of_lt Hpos
|
||
|
||
theorem of_nat_succ_pos (n : nat) : of_nat (nat.succ n) > 0 :=
|
||
of_nat_pos !nat.succ_pos
|
||
|
||
theorem exists_eq_of_nat {a : ℤ} (H : 0 ≤ a) : ∃n : ℕ, a = of_nat n :=
|
||
obtain (n : ℕ) (H1 : 0 + of_nat n = a), from le.elim H,
|
||
exists.intro n (!zero_add ▸ (H1⁻¹))
|
||
|
||
theorem exists_eq_neg_of_nat {a : ℤ} (H : a ≤ 0) : ∃n : ℕ, a = -(of_nat n) :=
|
||
have -a ≥ 0, from iff.mpr !neg_nonneg_iff_nonpos H,
|
||
obtain (n : ℕ) (Hn : -a = of_nat n), from exists_eq_of_nat this,
|
||
exists.intro n (eq_neg_of_eq_neg (Hn⁻¹))
|
||
|
||
theorem of_nat_nat_abs_of_nonneg {a : ℤ} (H : a ≥ 0) : of_nat (nat_abs a) = a :=
|
||
obtain (n : ℕ) (Hn : a = of_nat n), from exists_eq_of_nat H,
|
||
Hn⁻¹ ▸ congr_arg of_nat (nat_abs_of_nat n)
|
||
|
||
theorem of_nat_nat_abs_of_nonpos {a : ℤ} (H : a ≤ 0) : of_nat (nat_abs a) = -a :=
|
||
have -a ≥ 0, from iff.mpr !neg_nonneg_iff_nonpos H,
|
||
calc
|
||
of_nat (nat_abs a) = of_nat (nat_abs (-a)) : nat_abs_neg
|
||
... = -a : of_nat_nat_abs_of_nonneg this
|
||
|
||
theorem of_nat_nat_abs (b : ℤ) : nat_abs b = abs b :=
|
||
or.elim (le.total 0 b)
|
||
(assume H : b ≥ 0, of_nat_nat_abs_of_nonneg H ⬝ (abs_of_nonneg H)⁻¹)
|
||
(assume H : b ≤ 0, of_nat_nat_abs_of_nonpos H ⬝ (abs_of_nonpos H)⁻¹)
|
||
|
||
theorem nat_abs_abs (a : ℤ) : nat_abs (abs a) = nat_abs a :=
|
||
abs.by_cases rfl !nat_abs_neg
|
||
|
||
theorem lt_of_add_one_le {a b : ℤ} (H : a + 1 ≤ b) : a < b :=
|
||
obtain n (H1 : a + 1 + n = b), from le.elim H,
|
||
have a + succ n = b, by rewrite [-H1, add.assoc, add.comm 1],
|
||
lt.intro this
|
||
|
||
theorem add_one_le_of_lt {a b : ℤ} (H : a < b) : a + 1 ≤ b :=
|
||
obtain n (H1 : a + succ n = b), from lt.elim H,
|
||
have a + 1 + n = b, by rewrite [-H1, add.assoc, add.comm 1],
|
||
le.intro this
|
||
|
||
theorem lt_add_one_of_le {a b : ℤ} (H : a ≤ b) : a < b + 1 :=
|
||
lt_add_of_le_of_pos H trivial
|
||
|
||
theorem le_of_lt_add_one {a b : ℤ} (H : a < b + 1) : a ≤ b :=
|
||
have H1 : a + 1 ≤ b + 1, from add_one_le_of_lt H,
|
||
le_of_add_le_add_right H1
|
||
|
||
theorem sub_one_le_of_lt {a b : ℤ} (H : a ≤ b) : a - 1 < b :=
|
||
lt_of_add_one_le (!sub_add_cancel⁻¹ ▸ H)
|
||
|
||
theorem lt_of_sub_one_le {a b : ℤ} (H : a - 1 < b) : a ≤ b :=
|
||
!sub_add_cancel ▸ add_one_le_of_lt H
|
||
|
||
theorem le_sub_one_of_lt {a b : ℤ} (H : a < b) : a ≤ b - 1 :=
|
||
le_of_lt_add_one (!sub_add_cancel⁻¹ ▸ H)
|
||
|
||
theorem lt_of_le_sub_one {a b : ℤ} (H : a ≤ b - 1) : a < b :=
|
||
!sub_add_cancel ▸ (lt_add_one_of_le H)
|
||
|
||
theorem sign_of_succ (n : nat) : sign (nat.succ n) = 1 :=
|
||
sign_of_pos (of_nat_pos !nat.succ_pos)
|
||
|
||
theorem exists_eq_neg_succ_of_nat {a : ℤ} : a < 0 → ∃m : ℕ, a = -[1+m] :=
|
||
int.cases_on a
|
||
(take m H, absurd (of_nat_nonneg m : 0 ≤ m) (not_le_of_gt H))
|
||
(take m H, exists.intro m rfl)
|
||
|
||
theorem eq_one_of_mul_eq_one_right {a b : ℤ} (H : a ≥ 0) (H' : a * b = 1) : a = 1 :=
|
||
have a * b > 0, by rewrite H'; apply trivial,
|
||
have b > 0, from pos_of_mul_pos_left this H,
|
||
have a > 0, from pos_of_mul_pos_right `a * b > 0` (le_of_lt `b > 0`),
|
||
or.elim (le_or_gt a 1)
|
||
(suppose a ≤ 1,
|
||
show a = 1, from le.antisymm this (add_one_le_of_lt `a > 0`))
|
||
(suppose a > 1,
|
||
assert a * b ≥ 2 * 1,
|
||
from mul_le_mul (add_one_le_of_lt `a > 1`) (add_one_le_of_lt `b > 0`) trivial H,
|
||
have false, by rewrite [H' at this]; exact this,
|
||
false.elim this)
|
||
|
||
theorem eq_one_of_mul_eq_one_left {a b : ℤ} (H : b ≥ 0) (H' : a * b = 1) : b = 1 :=
|
||
eq_one_of_mul_eq_one_right H (!mul.comm ▸ H')
|
||
|
||
theorem eq_one_of_mul_eq_self_left {a b : ℤ} (Hpos : a ≠ 0) (H : b * a = a) : b = 1 :=
|
||
eq_of_mul_eq_mul_right Hpos (H ⬝ (one_mul a)⁻¹)
|
||
|
||
theorem eq_one_of_mul_eq_self_right {a b : ℤ} (Hpos : b ≠ 0) (H : b * a = b) : a = 1 :=
|
||
eq_one_of_mul_eq_self_left Hpos (!mul.comm ▸ H)
|
||
|
||
theorem eq_one_of_dvd_one {a : ℤ} (H : a ≥ 0) (H' : a ∣ 1) : a = 1 :=
|
||
dvd.elim H'
|
||
(take b,
|
||
suppose 1 = a * b,
|
||
eq_one_of_mul_eq_one_right H this⁻¹)
|
||
|
||
end int
|