lean2/tests/lean/tst6.lean
Leonardo de Moura 4ba097a141 feat(frontends/lean): use lowercase commands, replace 'endscope' and 'endnamespace' with 'end'
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
2014-01-05 13:06:36 -08:00

58 lines
2.1 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

variable N : Type
variable h : N -> N -> N
theorem CongrH {a1 a2 b1 b2 : N} (H1 : a1 = b1) (H2 : a2 = b2) : (h a1 a2) = (h b1 b2) :=
Congr (Congr (Refl h) H1) H2
-- Display the theorem showing implicit arguments
setoption lean::pp::implicit true
print environment 2
-- Display the theorem hiding implicit arguments
setoption lean::pp::implicit false
print environment 2
theorem Example1 (a b c d : N) (H: (a = b ∧ b = c) (a = d ∧ d = c)) : (h a b) = (h c b) :=
DisjCases H
(fun H1 : a = b ∧ b = c,
CongrH (Trans (Conjunct1 H1) (Conjunct2 H1)) (Refl b))
(fun H1 : a = d ∧ d = c,
CongrH (Trans (Conjunct1 H1) (Conjunct2 H1)) (Refl b))
-- print proof of the last theorem with all implicit arguments
setoption lean::pp::implicit true
print environment 1
-- Using placeholders to hide the type of H1
theorem Example2 (a b c d : N) (H: (a = b ∧ b = c) (a = d ∧ d = c)) : (h a b) = (h c b) :=
DisjCases H
(fun H1 : _,
CongrH (Trans (Conjunct1 H1) (Conjunct2 H1)) (Refl b))
(fun H1 : _,
CongrH (Trans (Conjunct1 H1) (Conjunct2 H1)) (Refl b))
setoption lean::pp::implicit true
print environment 1
-- Same example but the first conjuct has unnecessary stuff
theorem Example3 (a b c d e : N) (H: (a = b ∧ b = e ∧ b = c) (a = d ∧ d = c)) : (h a b) = (h c b) :=
DisjCases H
(fun H1 : _,
CongrH (Trans (Conjunct1 H1) (Conjunct2 (Conjunct2 H1))) (Refl b))
(fun H1 : _,
CongrH (Trans (Conjunct1 H1) (Conjunct2 H1)) (Refl b))
setoption lean::pp::implicit false
print environment 1
theorem Example4 (a b c d e : N) (H: (a = b ∧ b = e ∧ b = c) (a = d ∧ d = c)) : (h a c) = (h c a) :=
DisjCases H
(fun H1 : _,
let AeqC := Trans (Conjunct1 H1) (Conjunct2 (Conjunct2 H1))
in CongrH AeqC (Symm AeqC))
(fun H1 : _,
let AeqC := Trans (Conjunct1 H1) (Conjunct2 H1)
in CongrH AeqC (Symm AeqC))
setoption lean::pp::implicit false
print environment 1