lean2/tests/lean/tst6.lean.expected.out
Leonardo de Moura 812c1a2960 feat(library/elaborator): only expand definitions that are not marked as hidden
The elaborator produces better proof terms. This is particularly important when we have to prove the remaining holes using tactics.
For example, in one of the tests, the elaborator was producing the sub-expression

 (λ x : N, if ((λ x::1 : N, if (P a x x::1) ⊥ ⊤) == (λ x : N, ⊤)) ⊥ ⊤)

After, this commit it produces

 (λ x : N, ¬ ∀ x::1 : N, ¬ P a x x::1)

The expressions above are definitionally equal, but the second is easier to work with.

Question: do we really need hidden definitions?
Perhaps, we can use only the opaque flag.

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
2013-12-20 02:16:49 -08:00

118 lines
4.1 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

Set: pp::colors
Set: pp::unicode
Assumed: N
Assumed: h
Proved: CongrH
Set: lean::pp::implicit
Variable h : N → N → N
Theorem CongrH {a1 a2 b1 b2 : N} (H1 : eq::explicit N a1 b1) (H2 : eq::explicit N a2 b2) : eq::explicit
N
(h a1 a2)
(h b1 b2) :=
Congr::explicit
N
(λ x : N, N)
(h a1)
(h b1)
a2
b2
(Congr::explicit N (λ x : N, N → N) h h a1 b1 (Refl::explicit (N → N → N) h) H1)
H2
Set: lean::pp::implicit
Variable h : N → N → N
Theorem CongrH {a1 a2 b1 b2 : N} (H1 : a1 = b1) (H2 : a2 = b2) : h a1 a2 = h b1 b2 := Congr (Congr (Refl h) H1) H2
Proved: Example1
Set: lean::pp::implicit
Theorem Example1 (a b c d : N)
(H : eq::explicit N a b ∧ eq::explicit N b c eq::explicit N a d ∧ eq::explicit N d c) : eq::explicit
N
(h a b)
(h c b) :=
DisjCases::explicit
(eq::explicit N a b ∧ eq::explicit N b c)
(eq::explicit N a d ∧ eq::explicit N d c)
(h a b == h c b)
H
(λ H1 : eq::explicit N a b ∧ eq::explicit N b c,
CongrH::explicit
a
b
c
b
(Trans::explicit
N
a
b
c
(Conjunct1::explicit (eq::explicit N a b) (eq::explicit N b c) H1)
(Conjunct2::explicit (eq::explicit N a b) (eq::explicit N b c) H1))
(Refl::explicit N b))
(λ H1 : eq::explicit N a d ∧ eq::explicit N d c,
CongrH::explicit
a
b
c
b
(Trans::explicit
N
a
d
c
(Conjunct1::explicit (eq::explicit N a d) (eq::explicit N d c) H1)
(Conjunct2::explicit (eq::explicit N a d) (eq::explicit N d c) H1))
(Refl::explicit N b))
Proved: Example2
Set: lean::pp::implicit
Theorem Example2 (a b c d : N)
(H : eq::explicit N a b ∧ eq::explicit N b c eq::explicit N a d ∧ eq::explicit N d c) : eq::explicit
N
(h a b)
(h c b) :=
DisjCases::explicit
(eq::explicit N a b ∧ eq::explicit N b c)
(eq::explicit N a d ∧ eq::explicit N d c)
(eq::explicit N (h a b) (h c b))
H
(λ H1 : eq::explicit N a b ∧ eq::explicit N b c,
CongrH::explicit
a
b
c
b
(Trans::explicit
N
a
b
c
(Conjunct1::explicit (a == b) (eq::explicit N b c) H1)
(Conjunct2::explicit (eq::explicit N a b) (b == c) H1))
(Refl::explicit N b))
(λ H1 : eq::explicit N a d ∧ eq::explicit N d c,
CongrH::explicit
a
b
c
b
(Trans::explicit
N
a
d
c
(Conjunct1::explicit (a == d) (eq::explicit N d c) H1)
(Conjunct2::explicit (eq::explicit N a d) (d == c) H1))
(Refl::explicit N b))
Proved: Example3
Set: lean::pp::implicit
Theorem Example3 (a b c d e : N) (H : a = b ∧ b = e ∧ b = c a = d ∧ d = c) : h a b = h c b :=
DisjCases
H
(λ H1 : a = b ∧ b = e ∧ b = c, CongrH (Trans (Conjunct1 H1) (Conjunct2 (Conjunct2 H1))) (Refl b))
(λ H1 : a = d ∧ d = c, CongrH (Trans (Conjunct1 H1) (Conjunct2 H1)) (Refl b))
Proved: Example4
Set: lean::pp::implicit
Theorem Example4 (a b c d e : N) (H : a = b ∧ b = e ∧ b = c a = d ∧ d = c) : h a c = h c a :=
DisjCases
H
(λ H1 : a = b ∧ b = e ∧ b = c,
let AeqC := Trans (Conjunct1 H1) (Conjunct2 (Conjunct2 H1)) in CongrH AeqC (Symm AeqC))
(λ H1 : a = d ∧ d = c, let AeqC := Trans (Conjunct1 H1) (Conjunct2 H1) in CongrH AeqC (Symm AeqC))