194 lines
7.3 KiB
Text
194 lines
7.3 KiB
Text
import data.list
|
||
open list setoid quot decidable nat
|
||
|
||
namespace finset
|
||
|
||
definition eqv {A : Type} (l₁ l₂ : list A) :=
|
||
∀ a, a ∈ l₁ ↔ a ∈ l₂
|
||
|
||
infix `~` := eqv
|
||
|
||
theorem eqv.refl {A : Type} (l : list A) : l ~ l :=
|
||
λ a, !iff.refl
|
||
|
||
theorem eqv.symm {A : Type} {l₁ l₂ : list A} : l₁ ~ l₂ → l₂ ~ l₁ :=
|
||
λ H a, iff.symm (H a)
|
||
|
||
theorem eqv.trans {A : Type} {l₁ l₂ l₃ : list A} : l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃ :=
|
||
λ H₁ H₂ a, iff.trans (H₁ a) (H₂ a)
|
||
|
||
theorem eqv.is_equivalence (A : Type) : equivalence (@eqv A) :=
|
||
and.intro (@eqv.refl A) (and.intro (@eqv.symm A) (@eqv.trans A))
|
||
|
||
definition norep {A : Type} [H : decidable_eq A] : list A → list A
|
||
| [] := []
|
||
| (x :: xs) := if x ∈ xs then norep xs else x :: norep xs
|
||
|
||
definition eqv_norep {A : Type} [H : decidable_eq A] : ∀ l : list A, l ~ norep l
|
||
| [] := (λ a, iff.rfl)
|
||
| (x :: xs) :=
|
||
take y,
|
||
assert ih : xs ~ norep xs, from eqv_norep xs,
|
||
show y ∈ x :: xs ↔ y ∈ if x ∈ xs then norep xs else x :: norep xs,
|
||
begin
|
||
apply (@by_cases (x ∈ xs)),
|
||
begin
|
||
intro xin, rewrite (if_pos xin),
|
||
apply iff.intro,
|
||
{intro yinxxs, apply (or.elim (iff.mp !mem_cons_iff yinxxs)),
|
||
intro yeqx, rewrite -yeqx at xin, exact (iff.mp (ih y) xin),
|
||
intro yeqxs, exact (iff.mp (ih y) yeqxs)},
|
||
{intro yinnrep, show y ∈ x::xs, from or.inr (iff.mp' (ih y) yinnrep)}
|
||
end,
|
||
begin
|
||
intro xnin, rewrite (if_neg xnin),
|
||
apply iff.intro,
|
||
{intro yinxxs, apply (or.elim (iff.mp !mem_cons_iff yinxxs)),
|
||
intro yeqx, rewrite yeqx, apply mem_cons,
|
||
intro yinxs, show y ∈ x:: norep xs, from or.inr (iff.mp (ih y) yinxs)},
|
||
{intro yinxnrep, apply (or.elim (iff.mp !mem_cons_iff yinxnrep)),
|
||
intro yeqx, rewrite yeqx, apply mem_cons,
|
||
intro yinrep, show y ∈ x::xs, from or.inr (iff.mp' (ih y) yinrep)}
|
||
end
|
||
end
|
||
|
||
definition sub {A : Type} (l₁ l₂ : list A) := ∀ a, a ∈ l₁ → a ∈ l₂
|
||
|
||
infix ⊆ := sub
|
||
|
||
theorem eqv_of_sub_of_sub {A : Type} {l₁ l₂ : list A} : l₁ ⊆ l₂ → l₂ ⊆ l₁ → l₁ ~ l₂ :=
|
||
assume h₁ h₂ a, iff.intro (h₁ a) (h₂ a)
|
||
|
||
theorem sub_of_eqv_left {A : Type} {l₁ l₂ : list A} : l₁ ~ l₂ → l₁ ⊆ l₂ :=
|
||
assume h₁ a ainl₁, iff.mp (h₁ a) ainl₁
|
||
|
||
theorem sub_of_eqv_right {A : Type} {l₁ l₂ : list A} : l₁ ~ l₂ → l₂ ⊆ l₁ :=
|
||
assume h₁ a ainl₂, iff.mp' (h₁ a) ainl₂
|
||
|
||
definition sub_of_cons_sub {A : Type} {a : A} {l₁ l₂ : list A} : a :: l₁ ⊆ l₂ → l₁ ⊆ l₂ :=
|
||
assume s, take b, assume binl₁, s b (or.inr binl₁)
|
||
|
||
definition decidable_sub [instance] {A : Type} [H : decidable_eq A] : ∀ l₁ l₂ : list A, decidable (l₁ ⊆ l₂)
|
||
| [] ys := inl (λ a h, absurd h !not_mem_nil)
|
||
| (x::xs) ys :=
|
||
if xinys : x ∈ ys then
|
||
match decidable_sub xs ys with
|
||
| (inl xs_sub_ys) := inl (λ y yinxxs, or.elim (iff.mp !mem_cons_iff yinxxs)
|
||
(λ yeqx, by rewrite yeqx; exact xinys)
|
||
(λ yinxs, xs_sub_ys y yinxs))
|
||
| (inr nxs_sub_ys) := inr (λ h, absurd (sub_of_cons_sub h) nxs_sub_ys)
|
||
end
|
||
else
|
||
inr (λ h, absurd (h x !mem_cons) xinys)
|
||
|
||
example : [(1 : nat), 2, 3] ⊆ [1,3,4,1,2] :=
|
||
dec_trivial
|
||
|
||
definition decidable_eqv [instance] {A : Type} [H : decidable_eq A] : ∀ l₁ l₂ : list A, decidable (l₁ ~ l₂) :=
|
||
take l₁ l₂ : list A,
|
||
match decidable_sub l₁ l₂ with
|
||
| (inl s₁) :=
|
||
match decidable_sub l₂ l₁ with
|
||
| (inl s₂) := inl (eqv_of_sub_of_sub s₁ s₂)
|
||
| (inr n₂) := inr (λ h, absurd (sub_of_eqv_right h) n₂)
|
||
end
|
||
| (inr n₁) := inr (λ h, absurd (sub_of_eqv_left h) n₁)
|
||
end
|
||
|
||
example : [(1:nat), 2, 3, 2, 2, 2] ~ [1,3,3,1,2] :=
|
||
dec_trivial
|
||
|
||
definition finset_setoid [instance] (A : Type) : setoid (list A) :=
|
||
setoid.mk (@eqv A) (eqv.is_equivalence A)
|
||
|
||
definition finset (A : Type) : Type :=
|
||
quot (finset_setoid A)
|
||
|
||
definition has_decidable_eq [instance] {A : Type} [H : decidable_eq A] : ∀ s₁ s₂ : finset A, decidable (s₁ = s₂) :=
|
||
take s₁ s₂, quot.rec_on_subsingleton₂ s₁ s₂
|
||
(take l₁ l₂,
|
||
match decidable_eqv l₁ l₂ with
|
||
| inl e := inl (quot.sound e)
|
||
| inr d := inr (λ e, absurd (quot.exact e) d)
|
||
end)
|
||
|
||
definition to_finset {A : Type} (l : list A) : finset A :=
|
||
⟦l⟧
|
||
|
||
definition mem {A : Type} (a : A) (s : finset A) : Prop :=
|
||
quot.lift_on s
|
||
(λ l : list A, a ∈ l)
|
||
(λ l₁ l₂ r, propext (r a))
|
||
|
||
infix ∈ := mem
|
||
|
||
theorem mem_list {A : Type} {a : A} {l : list A} : a ∈ l → a ∈ ⟦l⟧ :=
|
||
λ H, H
|
||
|
||
definition empty {A : Type} : finset A :=
|
||
⟦nil⟧
|
||
|
||
notation `∅` := empty
|
||
|
||
definition union {A : Type} (s₁ s₂ : finset A) : finset A :=
|
||
quot.lift_on₂ s₁ s₂
|
||
(λ l₁ l₂ : list A, ⟦l₁ ++ l₂⟧)
|
||
(λ l₁ l₂ l₃ l₄ r₁ r₂,
|
||
begin
|
||
apply quot.sound,
|
||
intro a,
|
||
apply iff.intro,
|
||
begin
|
||
intro inl₁l₂,
|
||
apply (or.elim (mem_or_mem_of_mem_append inl₁l₂)),
|
||
intro inl₁, exact (mem_append_of_mem_or_mem (or.inl (iff.mp (r₁ a) inl₁))),
|
||
intro inl₂, exact (mem_append_of_mem_or_mem (or.inr (iff.mp (r₂ a) inl₂)))
|
||
end,
|
||
begin
|
||
intro inl₃l₄,
|
||
|
||
apply (or.elim (mem_or_mem_of_mem_append inl₃l₄)),
|
||
intro inl₃, exact (mem_append_of_mem_or_mem (or.inl (iff.mp' (r₁ a) inl₃))),
|
||
intro inl₄, exact (mem_append_of_mem_or_mem (or.inr (iff.mp' (r₂ a) inl₄)))
|
||
end,
|
||
end)
|
||
|
||
infix `∪` := union
|
||
|
||
theorem mem_union_left {A : Type} (s₁ s₂ : finset A) (a : A) : a ∈ s₁ → a ∈ s₁ ∪ s₂ :=
|
||
quot.ind₂ (λ l₁ l₂ ainl₁, mem_append_left l₂ ainl₁) s₁ s₂
|
||
|
||
theorem mem_union_right {A : Type} (s₁ s₂ : finset A) (a : A) : a ∈ s₂ → a ∈ s₁ ∪ s₂ :=
|
||
quot.ind₂ (λ l₁ l₂ ainl₂, mem_append_right l₁ ainl₂) s₁ s₂
|
||
|
||
theorem union_empty {A : Type} (s : finset A) : s ∪ ∅ = s :=
|
||
quot.induction_on s (λ l, quot.sound (λ a, by rewrite append_nil_right))
|
||
|
||
theorem empty_union {A : Type} (s : finset A) : ∅ ∪ s = s :=
|
||
quot.induction_on s (λ l, quot.sound (λ a, by rewrite append_nil_left))
|
||
|
||
example : to_finset (1::2::nil) ∪ to_finset (2::3::nil) = ⟦1 :: 2 :: 2 :: 3 :: nil⟧ :=
|
||
rfl
|
||
|
||
example : to_finset [(1:nat), 1, 2, 3] = to_finset [2, 3, 1, 2, 2, 3] :=
|
||
dec_trivial
|
||
|
||
example : to_finset [(1:nat), 1, 4, 2, 3] ≠ to_finset [2, 3, 1, 2, 2, 3] :=
|
||
dec_trivial
|
||
|
||
definition clean {A : Type} [H : decidable_eq A] (s : finset A) : finset A :=
|
||
quot.lift_on s (λ l, ⟦norep l⟧)
|
||
(λ l₁ l₂ e, calc
|
||
⟦norep l₁⟧ = ⟦l₁⟧ : quot.sound (eqv_norep l₁)
|
||
... = ⟦l₂⟧ : quot.sound e
|
||
... = ⟦norep l₂⟧ : quot.sound (eqv_norep l₂))
|
||
|
||
theorem eq_clean {A : Type} [H : decidable_eq A] : ∀ s : finset A, clean s = s :=
|
||
take s, quot.induction_on s (λ l, eq.symm (quot.sound (eqv_norep l)))
|
||
|
||
theorem eq_of_clean_eq_clean {A : Type} [H : decidable_eq A] : ∀ s₁ s₂, clean s₁ = clean s₂ → s₁ = s₂ :=
|
||
take s₁ s₂, by rewrite *eq_clean; intro H; apply H
|
||
|
||
example : to_finset [(1:nat), 1, 2, 3] = to_finset [1, 2, 2, 2, 3, 3] :=
|
||
!eq_of_clean_eq_clean rfl
|
||
end finset
|