451 lines
18 KiB
Text
451 lines
18 KiB
Text
/-
|
||
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Author: Jeremy Avigad, Jakob von Raumer, Floris van Doorn
|
||
|
||
Ported from Coq HoTT
|
||
-/
|
||
|
||
prelude
|
||
import .path .function
|
||
open eq function lift
|
||
|
||
/- Equivalences -/
|
||
|
||
-- This is our definition of equivalence. In the HoTT-book it's called
|
||
-- ihae (half-adjoint equivalence).
|
||
structure is_equiv [class] {A B : Type} (f : A → B) :=
|
||
mk' ::
|
||
(inv : B → A)
|
||
(right_inv : Πb, f (inv b) = b)
|
||
(left_inv : Πa, inv (f a) = a)
|
||
(adj : Πx, right_inv (f x) = ap f (left_inv x))
|
||
|
||
attribute is_equiv.inv [reducible]
|
||
|
||
-- A more bundled version of equivalence
|
||
structure equiv (A B : Type) :=
|
||
(to_fun : A → B)
|
||
(to_is_equiv : is_equiv to_fun)
|
||
|
||
namespace is_equiv
|
||
/- Some instances and closure properties of equivalences -/
|
||
postfix ⁻¹ := inv
|
||
/- a second notation for the inverse, which is not overloaded -/
|
||
postfix [parsing_only] `⁻¹ᶠ`:std.prec.max_plus := inv
|
||
|
||
section
|
||
variables {A B C : Type} (g : B → C) (f : A → B) {f' : A → B}
|
||
|
||
-- The variant of mk' where f is explicit.
|
||
protected definition mk [constructor] := @is_equiv.mk' A B f
|
||
|
||
-- The identity function is an equivalence.
|
||
definition is_equiv_id [instance] [constructor] (A : Type) : (is_equiv (id : A → A)) :=
|
||
is_equiv.mk id id (λa, idp) (λa, idp) (λa, idp)
|
||
|
||
-- The composition of two equivalences is, again, an equivalence.
|
||
definition is_equiv_compose [constructor] [Hf : is_equiv f] [Hg : is_equiv g]
|
||
: is_equiv (g ∘ f) :=
|
||
is_equiv.mk (g ∘ f) (f⁻¹ ∘ g⁻¹)
|
||
abstract (λc, ap g (right_inv f (g⁻¹ c)) ⬝ right_inv g c) end
|
||
abstract (λa, ap (inv f) (left_inv g (f a)) ⬝ left_inv f a) end
|
||
abstract (λa, (whisker_left _ (adj g (f a))) ⬝
|
||
(ap_con g _ _)⁻¹ ⬝
|
||
ap02 g ((ap_con_eq_con (right_inv f) (left_inv g (f a)))⁻¹ ⬝
|
||
(ap_compose f (inv f) _ ◾ adj f a) ⬝
|
||
(ap_con f _ _)⁻¹
|
||
) ⬝
|
||
(ap_compose g f _)⁻¹) end
|
||
|
||
-- Any function equal to an equivalence is an equivlance as well.
|
||
variable {f}
|
||
definition is_equiv_eq_closed [Hf : is_equiv f] (Heq : f = f') : is_equiv f' :=
|
||
eq.rec_on Heq Hf
|
||
end
|
||
|
||
section
|
||
parameters {A B : Type} (f : A → B) (g : B → A)
|
||
(ret : Πb, f (g b) = b) (sec : Πa, g (f a) = a)
|
||
|
||
definition adjointify_left_inv' [unfold_full] (a : A) : g (f a) = a :=
|
||
ap g (ap f (inverse (sec a))) ⬝ ap g (ret (f a)) ⬝ sec a
|
||
|
||
theorem adjointify_adj' (a : A) : ret (f a) = ap f (adjointify_left_inv' a) :=
|
||
let fgretrfa := ap f (ap g (ret (f a))) in
|
||
let fgfinvsect := ap f (ap g (ap f (sec a)⁻¹)) in
|
||
let fgfa := f (g (f a)) in
|
||
let retrfa := ret (f a) in
|
||
have eq1 : ap f (sec a) = _,
|
||
from calc ap f (sec a)
|
||
= idp ⬝ ap f (sec a) : by rewrite idp_con
|
||
... = (ret (f a) ⬝ (ret (f a))⁻¹) ⬝ ap f (sec a) : by rewrite con.right_inv
|
||
... = ((ret fgfa)⁻¹ ⬝ ap (f ∘ g) (ret (f a))) ⬝ ap f (sec a) : by rewrite con_ap_eq_con
|
||
... = ((ret fgfa)⁻¹ ⬝ fgretrfa) ⬝ ap f (sec a) : by rewrite ap_compose
|
||
... = (ret fgfa)⁻¹ ⬝ (fgretrfa ⬝ ap f (sec a)) : by rewrite con.assoc,
|
||
have eq2 : ap f (sec a) ⬝ idp = (ret fgfa)⁻¹ ⬝ (fgretrfa ⬝ ap f (sec a)),
|
||
from !con_idp ⬝ eq1,
|
||
have eq3 : idp = _,
|
||
from calc idp
|
||
= (ap f (sec a))⁻¹ ⬝ ((ret fgfa)⁻¹ ⬝ (fgretrfa ⬝ ap f (sec a))) : eq_inv_con_of_con_eq eq2
|
||
... = ((ap f (sec a))⁻¹ ⬝ (ret fgfa)⁻¹) ⬝ (fgretrfa ⬝ ap f (sec a)) : by rewrite con.assoc'
|
||
... = (ap f (sec a)⁻¹ ⬝ (ret fgfa)⁻¹) ⬝ (fgretrfa ⬝ ap f (sec a)) : by rewrite ap_inv
|
||
... = ((ap f (sec a)⁻¹ ⬝ (ret fgfa)⁻¹) ⬝ fgretrfa) ⬝ ap f (sec a) : by rewrite con.assoc'
|
||
... = ((retrfa⁻¹ ⬝ ap (f ∘ g) (ap f (sec a)⁻¹)) ⬝ fgretrfa) ⬝ ap f (sec a) : by rewrite con_ap_eq_con
|
||
... = ((retrfa⁻¹ ⬝ fgfinvsect) ⬝ fgretrfa) ⬝ ap f (sec a) : by rewrite ap_compose
|
||
... = (retrfa⁻¹ ⬝ (fgfinvsect ⬝ fgretrfa)) ⬝ ap f (sec a) : by rewrite con.assoc'
|
||
... = retrfa⁻¹ ⬝ ap f (ap g (ap f (sec a)⁻¹) ⬝ ap g (ret (f a))) ⬝ ap f (sec a) : by rewrite ap_con
|
||
... = retrfa⁻¹ ⬝ (ap f (ap g (ap f (sec a)⁻¹) ⬝ ap g (ret (f a))) ⬝ ap f (sec a)) : by rewrite con.assoc'
|
||
... = retrfa⁻¹ ⬝ ap f ((ap g (ap f (sec a)⁻¹) ⬝ ap g (ret (f a))) ⬝ sec a) : by rewrite -ap_con,
|
||
show ret (f a) = ap f ((ap g (ap f (sec a)⁻¹) ⬝ ap g (ret (f a))) ⬝ sec a),
|
||
from eq_of_idp_eq_inv_con eq3
|
||
|
||
definition adjointify [constructor] : is_equiv f :=
|
||
is_equiv.mk f g ret adjointify_left_inv' adjointify_adj'
|
||
end
|
||
|
||
-- Any function pointwise equal to an equivalence is an equivalence as well.
|
||
definition homotopy_closed [constructor] {A B : Type} (f : A → B) {f' : A → B} [Hf : is_equiv f]
|
||
(Hty : f ~ f') : is_equiv f' :=
|
||
adjointify f'
|
||
(inv f)
|
||
(λ b, (Hty (inv f b))⁻¹ ⬝ right_inv f b)
|
||
(λ a, (ap (inv f) (Hty a))⁻¹ ⬝ left_inv f a)
|
||
|
||
definition inv_homotopy_closed [constructor] {A B : Type} {f : A → B} {f' : B → A}
|
||
[Hf : is_equiv f] (Hty : f⁻¹ ~ f') : is_equiv f :=
|
||
adjointify f
|
||
f'
|
||
(λ b, ap f !Hty⁻¹ ⬝ right_inv f b)
|
||
(λ a, !Hty⁻¹ ⬝ left_inv f a)
|
||
|
||
definition is_equiv_up [instance] [constructor] (A : Type)
|
||
: is_equiv (up : A → lift A) :=
|
||
adjointify up down (λa, by induction a;reflexivity) (λa, idp)
|
||
|
||
section
|
||
variables {A B C : Type} (f : A → B) {f' : A → B} [Hf : is_equiv f] (g : B → C)
|
||
include Hf
|
||
|
||
-- The function equiv_rect says that given an equivalence f : A → B,
|
||
-- and a hypothesis from B, one may always assume that the hypothesis
|
||
-- is in the image of e.
|
||
|
||
-- In fibrational terms, if we have a fibration over B which has a section
|
||
-- once pulled back along an equivalence f : A → B, then it has a section
|
||
-- over all of B.
|
||
|
||
definition is_equiv_rect (P : B → Type) (g : Πa, P (f a)) (b : B) : P b :=
|
||
right_inv f b ▸ g (f⁻¹ b)
|
||
|
||
definition is_equiv_rect' (P : A → B → Type) (g : Πb, P (f⁻¹ b) b) (a : A) : P a (f a) :=
|
||
left_inv f a ▸ g (f a)
|
||
|
||
definition is_equiv_rect_comp (P : B → Type)
|
||
(df : Π (x : A), P (f x)) (x : A) : is_equiv_rect f P df (f x) = df x :=
|
||
calc
|
||
is_equiv_rect f P df (f x)
|
||
= right_inv f (f x) ▸ df (f⁻¹ (f x)) : by esimp
|
||
... = ap f (left_inv f x) ▸ df (f⁻¹ (f x)) : by rewrite -adj
|
||
... = left_inv f x ▸ df (f⁻¹ (f x)) : by rewrite -tr_compose
|
||
... = df x : by rewrite (apdt df (left_inv f x))
|
||
|
||
theorem adj_inv (b : B) : left_inv f (f⁻¹ b) = ap f⁻¹ (right_inv f b) :=
|
||
is_equiv_rect f _
|
||
(λa, eq.cancel_right (left_inv f (id a))
|
||
(whisker_left _ !ap_id⁻¹ ⬝ (ap_con_eq_con_ap (left_inv f) (left_inv f a))⁻¹) ⬝
|
||
!ap_compose ⬝ ap02 f⁻¹ (adj f a)⁻¹)
|
||
b
|
||
|
||
--The inverse of an equivalence is, again, an equivalence.
|
||
definition is_equiv_inv [instance] [constructor] [priority 500] : is_equiv f⁻¹ :=
|
||
is_equiv.mk f⁻¹ f (left_inv f) (right_inv f) (adj_inv f)
|
||
|
||
-- The 2-out-of-3 properties
|
||
definition cancel_right (g : B → C) [Hgf : is_equiv (g ∘ f)] : (is_equiv g) :=
|
||
have Hfinv : is_equiv f⁻¹, from is_equiv_inv f,
|
||
@homotopy_closed _ _ _ _ (is_equiv_compose (g ∘ f) f⁻¹) (λb, ap g (@right_inv _ _ f _ b))
|
||
|
||
definition cancel_left (g : C → A) [Hgf : is_equiv (f ∘ g)] : (is_equiv g) :=
|
||
have Hfinv : is_equiv f⁻¹, from is_equiv_inv f,
|
||
@homotopy_closed _ _ _ _ (is_equiv_compose f⁻¹ (f ∘ g)) (λa, left_inv f (g a))
|
||
|
||
definition eq_of_fn_eq_fn' [unfold 4] {x y : A} (q : f x = f y) : x = y :=
|
||
(left_inv f x)⁻¹ ⬝ ap f⁻¹ q ⬝ left_inv f y
|
||
|
||
definition ap_eq_of_fn_eq_fn' {x y : A} (q : f x = f y) : ap f (eq_of_fn_eq_fn' f q) = q :=
|
||
!ap_con ⬝ whisker_right !ap_con _
|
||
⬝ ((!ap_inv ⬝ inverse2 (adj f _)⁻¹)
|
||
◾ (inverse (ap_compose f f⁻¹ _))
|
||
◾ (adj f _)⁻¹)
|
||
⬝ con_ap_con_eq_con_con (right_inv f) _ _
|
||
⬝ whisker_right !con.left_inv _
|
||
⬝ !idp_con
|
||
|
||
definition eq_of_fn_eq_fn'_ap {x y : A} (q : x = y) : eq_of_fn_eq_fn' f (ap f q) = q :=
|
||
by induction q; apply con.left_inv
|
||
|
||
definition is_equiv_ap [instance] [constructor] (x y : A) : is_equiv (ap f : x = y → f x = f y) :=
|
||
adjointify
|
||
(ap f)
|
||
(eq_of_fn_eq_fn' f)
|
||
(ap_eq_of_fn_eq_fn' f)
|
||
(eq_of_fn_eq_fn'_ap f)
|
||
|
||
end
|
||
|
||
section
|
||
variables {A B C : Type} {f : A → B} [Hf : is_equiv f]
|
||
include Hf
|
||
|
||
section rewrite_rules
|
||
variables {a : A} {b : B}
|
||
definition eq_of_eq_inv (p : a = f⁻¹ b) : f a = b :=
|
||
ap f p ⬝ right_inv f b
|
||
|
||
definition eq_of_inv_eq (p : f⁻¹ b = a) : b = f a :=
|
||
(eq_of_eq_inv p⁻¹)⁻¹
|
||
|
||
definition inv_eq_of_eq (p : b = f a) : f⁻¹ b = a :=
|
||
ap f⁻¹ p ⬝ left_inv f a
|
||
|
||
definition eq_inv_of_eq (p : f a = b) : a = f⁻¹ b :=
|
||
(inv_eq_of_eq p⁻¹)⁻¹
|
||
end rewrite_rules
|
||
|
||
variable (f)
|
||
|
||
section pre_compose
|
||
variables (α : A → C) (β : B → C)
|
||
|
||
definition homotopy_of_homotopy_inv_pre (p : β ~ α ∘ f⁻¹) : β ∘ f ~ α :=
|
||
λ a, p (f a) ⬝ ap α (left_inv f a)
|
||
|
||
definition homotopy_of_inv_homotopy_pre (p : α ∘ f⁻¹ ~ β) : α ~ β ∘ f :=
|
||
λ a, (ap α (left_inv f a))⁻¹ ⬝ p (f a)
|
||
|
||
definition inv_homotopy_of_homotopy_pre (p : α ~ β ∘ f) : α ∘ f⁻¹ ~ β :=
|
||
λ b, p (f⁻¹ b) ⬝ ap β (right_inv f b)
|
||
|
||
definition homotopy_inv_of_homotopy_pre (p : β ∘ f ~ α) : β ~ α ∘ f⁻¹ :=
|
||
λ b, (ap β (right_inv f b))⁻¹ ⬝ p (f⁻¹ b)
|
||
end pre_compose
|
||
|
||
section post_compose
|
||
variables (α : C → A) (β : C → B)
|
||
|
||
definition homotopy_of_homotopy_inv_post (p : α ~ f⁻¹ ∘ β) : f ∘ α ~ β :=
|
||
λ c, ap f (p c) ⬝ (right_inv f (β c))
|
||
|
||
definition homotopy_of_inv_homotopy_post (p : f⁻¹ ∘ β ~ α) : β ~ f ∘ α :=
|
||
λ c, (right_inv f (β c))⁻¹ ⬝ ap f (p c)
|
||
|
||
definition inv_homotopy_of_homotopy_post (p : β ~ f ∘ α) : f⁻¹ ∘ β ~ α :=
|
||
λ c, ap f⁻¹ (p c) ⬝ (left_inv f (α c))
|
||
|
||
definition homotopy_inv_of_homotopy_post (p : f ∘ α ~ β) : α ~ f⁻¹ ∘ β :=
|
||
λ c, (left_inv f (α c))⁻¹ ⬝ ap f⁻¹ (p c)
|
||
end post_compose
|
||
|
||
end
|
||
|
||
--Transporting is an equivalence
|
||
definition is_equiv_tr [constructor] {A : Type} (P : A → Type) {x y : A}
|
||
(p : x = y) : (is_equiv (transport P p)) :=
|
||
is_equiv.mk _ (transport P p⁻¹) (tr_inv_tr p) (inv_tr_tr p) (tr_inv_tr_lemma p)
|
||
|
||
-- a version where the transport is a cast. Note: A and B live in the same universe here.
|
||
definition is_equiv_cast [constructor] {A B : Type} (H : A = B) : is_equiv (cast H) :=
|
||
is_equiv_tr (λX, X) H
|
||
|
||
section
|
||
variables {A : Type} {B C : A → Type} (f : Π{a}, B a → C a) [H : Πa, is_equiv (@f a)]
|
||
{g : A → A} {g' : A → A} (h : Π{a}, B (g' a) → B (g a)) (h' : Π{a}, C (g' a) → C (g a))
|
||
|
||
include H
|
||
definition inv_commute' (p : Π⦃a : A⦄ (b : B (g' a)), f (h b) = h' (f b)) {a : A}
|
||
(c : C (g' a)) : f⁻¹ (h' c) = h (f⁻¹ c) :=
|
||
eq_of_fn_eq_fn' f (right_inv f (h' c) ⬝ ap h' (right_inv f c)⁻¹ ⬝ (p (f⁻¹ c))⁻¹)
|
||
|
||
definition fun_commute_of_inv_commute' (p : Π⦃a : A⦄ (c : C (g' a)), f⁻¹ (h' c) = h (f⁻¹ c))
|
||
{a : A} (b : B (g' a)) : f (h b) = h' (f b) :=
|
||
eq_of_fn_eq_fn' f⁻¹ (left_inv f (h b) ⬝ ap h (left_inv f b)⁻¹ ⬝ (p (f b))⁻¹)
|
||
|
||
definition ap_inv_commute' (p : Π⦃a : A⦄ (b : B (g' a)), f (h b) = h' (f b)) {a : A}
|
||
(c : C (g' a)) : ap f (inv_commute' @f @h @h' p c)
|
||
= right_inv f (h' c) ⬝ ap h' (right_inv f c)⁻¹ ⬝ (p (f⁻¹ c))⁻¹ :=
|
||
!ap_eq_of_fn_eq_fn'
|
||
|
||
-- inv_commute'_fn is in types.equiv
|
||
end
|
||
|
||
-- This is inv_commute' for A ≡ unit
|
||
definition inv_commute1' {B C : Type} (f : B → C) [is_equiv f] (h : B → B) (h' : C → C)
|
||
(p : Π(b : B), f (h b) = h' (f b)) (c : C) : f⁻¹ (h' c) = h (f⁻¹ c) :=
|
||
eq_of_fn_eq_fn' f (right_inv f (h' c) ⬝ ap h' (right_inv f c)⁻¹ ⬝ (p (f⁻¹ c))⁻¹)
|
||
|
||
end is_equiv
|
||
open is_equiv
|
||
|
||
namespace eq
|
||
local attribute is_equiv_tr [instance]
|
||
|
||
definition tr_inv_fn {A : Type} {B : A → Type} {a a' : A} (p : a = a') :
|
||
transport B p⁻¹ = (transport B p)⁻¹ := idp
|
||
definition tr_inv {A : Type} {B : A → Type} {a a' : A} (p : a = a') (b : B a') :
|
||
p⁻¹ ▸ b = (transport B p)⁻¹ b := idp
|
||
|
||
definition cast_inv_fn {A B : Type} (p : A = B) : cast p⁻¹ = (cast p)⁻¹ := idp
|
||
definition cast_inv {A B : Type} (p : A = B) (b : B) : cast p⁻¹ b = (cast p)⁻¹ b := idp
|
||
end eq
|
||
|
||
infix ` ≃ `:25 := equiv
|
||
attribute equiv.to_is_equiv [instance]
|
||
|
||
namespace equiv
|
||
attribute to_fun [coercion]
|
||
|
||
section
|
||
variables {A B C : Type}
|
||
|
||
protected definition MK [reducible] [constructor] (f : A → B) (g : B → A)
|
||
(right_inv : Πb, f (g b) = b) (left_inv : Πa, g (f a) = a) : A ≃ B :=
|
||
equiv.mk f (adjointify f g right_inv left_inv)
|
||
|
||
definition to_inv [reducible] [unfold 3] (f : A ≃ B) : B → A := f⁻¹
|
||
definition to_right_inv [reducible] [unfold 3] (f : A ≃ B) (b : B) : f (f⁻¹ b) = b :=
|
||
right_inv f b
|
||
definition to_left_inv [reducible] [unfold 3] (f : A ≃ B) (a : A) : f⁻¹ (f a) = a :=
|
||
left_inv f a
|
||
|
||
protected definition rfl [refl] [constructor] : A ≃ A :=
|
||
equiv.mk id !is_equiv_id
|
||
|
||
protected definition refl [constructor] [reducible] (A : Type) : A ≃ A :=
|
||
@equiv.rfl A
|
||
|
||
protected definition symm [symm] [constructor] (f : A ≃ B) : B ≃ A :=
|
||
equiv.mk f⁻¹ !is_equiv_inv
|
||
|
||
protected definition trans [trans] [constructor] (f : A ≃ B) (g : B ≃ C) : A ≃ C :=
|
||
equiv.mk (g ∘ f) !is_equiv_compose
|
||
|
||
infixl ` ⬝e `:75 := equiv.trans
|
||
postfix `⁻¹ᵉ`:(max + 1) := equiv.symm
|
||
-- notation for inverse which is not overloaded
|
||
abbreviation erfl [constructor] := @equiv.rfl
|
||
|
||
definition to_inv_trans [reducible] [unfold_full] (f : A ≃ B) (g : B ≃ C)
|
||
: to_inv (f ⬝e g) = to_fun (g⁻¹ᵉ ⬝e f⁻¹ᵉ) :=
|
||
idp
|
||
|
||
definition equiv_change_fun [constructor] (f : A ≃ B) {f' : A → B} (Heq : f ~ f') : A ≃ B :=
|
||
equiv.mk f' (is_equiv.homotopy_closed f Heq)
|
||
|
||
definition equiv_change_inv [constructor] (f : A ≃ B) {f' : B → A} (Heq : f⁻¹ ~ f')
|
||
: A ≃ B :=
|
||
equiv.mk f (inv_homotopy_closed Heq)
|
||
|
||
--rename: eq_equiv_fn_eq_of_is_equiv
|
||
definition eq_equiv_fn_eq [constructor] (f : A → B) [H : is_equiv f] (a b : A) : (a = b) ≃ (f a = f b) :=
|
||
equiv.mk (ap f) !is_equiv_ap
|
||
|
||
--rename: eq_equiv_fn_eq
|
||
definition eq_equiv_fn_eq_of_equiv [constructor] (f : A ≃ B) (a b : A) : (a = b) ≃ (f a = f b) :=
|
||
equiv.mk (ap f) !is_equiv_ap
|
||
|
||
definition equiv_ap [constructor] (P : A → Type) {a b : A} (p : a = b) : P a ≃ P b :=
|
||
equiv.mk (transport P p) !is_equiv_tr
|
||
|
||
definition equiv_of_eq [constructor] {A B : Type} (p : A = B) : A ≃ B :=
|
||
equiv.mk (cast p) !is_equiv_tr
|
||
|
||
definition equiv_of_eq_refl [reducible] [unfold_full] (A : Type)
|
||
: equiv_of_eq (refl A) = equiv.refl A :=
|
||
idp
|
||
|
||
definition eq_of_fn_eq_fn [unfold 3] (f : A ≃ B) {x y : A} (q : f x = f y) : x = y :=
|
||
(left_inv f x)⁻¹ ⬝ ap f⁻¹ q ⬝ left_inv f y
|
||
|
||
definition eq_of_fn_eq_fn_inv [unfold 3] (f : A ≃ B) {x y : B} (q : f⁻¹ x = f⁻¹ y) : x = y :=
|
||
(right_inv f x)⁻¹ ⬝ ap f q ⬝ right_inv f y
|
||
|
||
--we need this theorem for the funext_of_ua proof
|
||
theorem inv_eq {A B : Type} (eqf eqg : A ≃ B) (p : eqf = eqg) : (to_fun eqf)⁻¹ = (to_fun eqg)⁻¹ :=
|
||
eq.rec_on p idp
|
||
|
||
definition equiv_of_equiv_of_eq [trans] {A B C : Type} (p : A = B) (q : B ≃ C) : A ≃ C :=
|
||
equiv_of_eq p ⬝e q
|
||
definition equiv_of_eq_of_equiv [trans] {A B C : Type} (p : A ≃ B) (q : B = C) : A ≃ C :=
|
||
p ⬝e equiv_of_eq q
|
||
|
||
definition equiv_lift [constructor] (A : Type) : A ≃ lift A := equiv.mk up _
|
||
|
||
definition equiv_rect (f : A ≃ B) (P : B → Type) (g : Πa, P (f a)) (b : B) : P b :=
|
||
right_inv f b ▸ g (f⁻¹ b)
|
||
|
||
definition equiv_rect' (f : A ≃ B) (P : A → B → Type) (g : Πb, P (f⁻¹ b) b) (a : A) : P a (f a) :=
|
||
left_inv f a ▸ g (f a)
|
||
|
||
definition equiv_rect_comp (f : A ≃ B) (P : B → Type)
|
||
(df : Π (x : A), P (f x)) (x : A) : equiv_rect f P df (f x) = df x :=
|
||
calc
|
||
equiv_rect f P df (f x)
|
||
= right_inv f (f x) ▸ df (f⁻¹ (f x)) : by esimp
|
||
... = ap f (left_inv f x) ▸ df (f⁻¹ (f x)) : by rewrite -adj
|
||
... = left_inv f x ▸ df (f⁻¹ (f x)) : by rewrite -tr_compose
|
||
... = df x : by rewrite (apdt df (left_inv f x))
|
||
end
|
||
|
||
section
|
||
|
||
variables {A B : Type} (f : A ≃ B) {a : A} {b : B}
|
||
definition to_eq_of_eq_inv (p : a = f⁻¹ b) : f a = b :=
|
||
ap f p ⬝ right_inv f b
|
||
|
||
definition to_eq_of_inv_eq (p : f⁻¹ b = a) : b = f a :=
|
||
(eq_of_eq_inv p⁻¹)⁻¹
|
||
|
||
definition to_inv_eq_of_eq (p : b = f a) : f⁻¹ b = a :=
|
||
ap f⁻¹ p ⬝ left_inv f a
|
||
|
||
definition to_eq_inv_of_eq (p : f a = b) : a = f⁻¹ b :=
|
||
(inv_eq_of_eq p⁻¹)⁻¹
|
||
|
||
end
|
||
|
||
section
|
||
|
||
variables {A : Type} {B C : A → Type} (f : Π{a}, B a ≃ C a)
|
||
{g : A → A} {g' : A → A} (h : Π{a}, B (g' a) → B (g a)) (h' : Π{a}, C (g' a) → C (g a))
|
||
|
||
definition inv_commute (p : Π⦃a : A⦄ (b : B (g' a)), f (h b) = h' (f b)) {a : A}
|
||
(c : C (g' a)) : f⁻¹ (h' c) = h (f⁻¹ c) :=
|
||
inv_commute' @f @h @h' p c
|
||
|
||
definition fun_commute_of_inv_commute (p : Π⦃a : A⦄ (c : C (g' a)), f⁻¹ (h' c) = h (f⁻¹ c))
|
||
{a : A} (b : B (g' a)) : f (h b) = h' (f b) :=
|
||
fun_commute_of_inv_commute' @f @h @h' p b
|
||
|
||
definition inv_commute1 {B C : Type} (f : B ≃ C) (h : B → B) (h' : C → C)
|
||
(p : Π(b : B), f (h b) = h' (f b)) (c : C) : f⁻¹ (h' c) = h (f⁻¹ c) :=
|
||
inv_commute1' (to_fun f) h h' p c
|
||
|
||
end
|
||
|
||
infixl ` ⬝pe `:75 := equiv_of_equiv_of_eq
|
||
infixl ` ⬝ep `:75 := equiv_of_eq_of_equiv
|
||
|
||
end equiv
|
||
|
||
open equiv
|
||
namespace is_equiv
|
||
|
||
definition is_equiv_of_equiv_of_homotopy [constructor] {A B : Type} (f : A ≃ B)
|
||
{f' : A → B} (Hty : f ~ f') : is_equiv f' :=
|
||
@(homotopy_closed f) f' _ Hty
|
||
|
||
end is_equiv
|
||
|
||
export [unfold] equiv
|
||
export [unfold] is_equiv
|