lean2/hott/hit/coeq.hlean
Floris van Doorn 50290fb81c feat(hott): add recursor attribute to hits
recursor attribute is added to both the dependent and nondependent elimination, is such a way that the dependent elimination is used by default
2015-05-26 21:37:01 -07:00

85 lines
2.8 KiB
Text

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
Declaration of the coequalizer
-/
import .type_quotient
open type_quotient eq equiv equiv.ops
namespace coeq
section
universe u
parameters {A B : Type.{u}} (f g : A → B)
inductive coeq_rel : B → B → Type :=
| Rmk : Π(x : A), coeq_rel (f x) (g x)
open coeq_rel
local abbreviation R := coeq_rel
definition coeq : Type := type_quotient coeq_rel -- TODO: define this in root namespace
definition coeq_i (x : B) : coeq :=
class_of R x
/- cp is the name Coq uses. I don't know what it abbreviates, but at least it's short :-) -/
definition cp (x : A) : coeq_i (f x) = coeq_i (g x) :=
eq_of_rel coeq_rel (Rmk f g x)
protected definition rec {P : coeq → Type} (P_i : Π(x : B), P (coeq_i x))
(Pcp : Π(x : A), cp x ▸ P_i (f x) = P_i (g x)) (y : coeq) : P y :=
begin
fapply (type_quotient.rec_on y),
{ intro a, apply P_i},
{ intro a a' H, cases H, apply Pcp}
end
protected definition rec_on [reducible] {P : coeq → Type} (y : coeq)
(P_i : Π(x : B), P (coeq_i x)) (Pcp : Π(x : A), cp x ▸ P_i (f x) = P_i (g x)) : P y :=
rec P_i Pcp y
theorem rec_cp {P : coeq → Type} (P_i : Π(x : B), P (coeq_i x))
(Pcp : Π(x : A), cp x ▸ P_i (f x) = P_i (g x))
(x : A) : apd (rec P_i Pcp) (cp x) = Pcp x :=
!rec_eq_of_rel
protected definition elim {P : Type} (P_i : B → P)
(Pcp : Π(x : A), P_i (f x) = P_i (g x)) (y : coeq) : P :=
rec P_i (λx, !tr_constant ⬝ Pcp x) y
protected definition elim_on [reducible] {P : Type} (y : coeq) (P_i : B → P)
(Pcp : Π(x : A), P_i (f x) = P_i (g x)) : P :=
elim P_i Pcp y
theorem elim_cp {P : Type} (P_i : B → P) (Pcp : Π(x : A), P_i (f x) = P_i (g x))
(x : A) : ap (elim P_i Pcp) (cp x) = Pcp x :=
begin
apply (@cancel_left _ _ _ _ (tr_constant (cp x) (elim P_i Pcp (coeq_i (f x))))),
rewrite [-apd_eq_tr_constant_con_ap,↑elim,rec_cp],
end
protected definition elim_type (P_i : B → Type)
(Pcp : Π(x : A), P_i (f x) ≃ P_i (g x)) (y : coeq) : Type :=
elim P_i (λx, ua (Pcp x)) y
protected definition elim_type_on [reducible] (y : coeq) (P_i : B → Type)
(Pcp : Π(x : A), P_i (f x) ≃ P_i (g x)) : Type :=
elim_type P_i Pcp y
theorem elim_type_cp (P_i : B → Type) (Pcp : Π(x : A), P_i (f x) ≃ P_i (g x))
(x : A) : transport (elim_type P_i Pcp) (cp x) = Pcp x :=
by rewrite [tr_eq_cast_ap_fn,↑elim_type,elim_cp];apply cast_ua_fn
end
end coeq
attribute coeq.coeq_i [constructor]
attribute coeq.elim coeq.rec [unfold-c 8] [recursor 8]
attribute coeq.elim_type [unfold-c 7]
attribute coeq.rec_on coeq.elim_on [unfold-c 6]
attribute coeq.elim_type_on [unfold-c 5]